CS 1050 - Proofs Homework 4 and 5 Assigned Tuesday, September 21 Due <u>Thursday</u>, September 30

1. a) Using ideas you've seen in this class, prove that if x, y are any integers and $2^x = 3^y$, then x = y = 0.

b) Using part a), show that the function $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ defined by $f(a,b) = 2^a 3^b$ is one-to-one.

2. For each of the following, show the statement is true by giving a proof, or disprove it by giving a counterexample:

- a) The sum of any three even integers is even.
- b) The sum of any three odd integers is even.
- c) The sum of two primes is never prime.
- d) The sum of any four consecutive integers is a multiple of 4.
- e) The sum of any five consecutive integers is a multiple of 5.

3. Consider the following sentence:

For every integer x, there is an integer y such that $y^2 = 5 + x^2$.

- a) Write this sentence in mathematical notation, using quantifiers.
- b) Is this statement true? Either prove it or give a counterexample.
- c) Write the negation of this statement in mathematical notation.

4. Consider this sentence:

There is an integer x such that for all integers y, there is an integer z such that

$$(x^2 > 4) \Rightarrow (y + z = x).$$

a) Write this sentence in mathematical notation, using quantifiers.

b) Is this statement true? Either prove it or give a counterexample.

c) Write the negation of this statement in mathematical notation.

5. a) Prove that for $a, b, c \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$, $[a = b \pmod{m}]$ implies $[ca = cb \pmod{m}]$.

b) Prove that for $a, b, c \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$, $[ca = cb \pmod{m}]$ does not imply that $[a = b \pmod{m}]$ by providing a counterexample.

6. For each of the following, solve and explain how you are using mods to get your answer:

a) What is the units digit of 3^{83} ?

b) What is the remainder when 3^{83} is divided by 7?

7. Prove that $9^n + 3$ is always a multiple of 4.

8. Using a truth table, prove the following (where " \iff " means "is equivalent to"):

a)
$$(p \to q) \iff ((\neg p) \lor q).$$

b) $[p \to (q \to r)] \iff [(p \to q) \to (p \to r)]$
c) $[(p \leftrightarrow q) \leftrightarrow r)] \iff [p \leftrightarrow (q \leftrightarrow r)].$

9. a) Disprove: $[(p \to q) \to r)] \iff [p \to (q \to r)].$

b) Now disprove it without truth tables by giving a counterexample.

10. Twin primes are consecutive odd integers where both are prime. An example is (3, 5).

a) Give 4 more examples of twin prime pairs.

b) Show that there cannot be a set of "triple primes" (i.e., a set of three consecutive odd numbers that are all prime).

11. Let $f : \mathbb{Z}^+ \to \mathbb{R}$ by f(n) = n for all $n \in \mathbb{Z}^+$. Let $g : \mathbb{Z}^+ \to \mathbb{R}$ by g(n) = g for all $n \in \mathbb{Z}^+$.

Now consider this sentence:

There are real numbers c and N such that for all positive integers n, [if $n \ge N$ then $f(n) \le c \cdot g(n)$].

a) Write this last sentence in mathematical notation.

b) Write the negation of this statement both mathematically and in English.