CS 1050b - How to Do Proofs - Fall 2004 Practice Midterm 1

1. Let $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ by $f\left(x_{1}, x_{2}\right)=\left(2 x_{1}+x_{2}, 3 x_{1}-x_{2}, 2 x_{1}+x_{2}\right)$ for all reals x_{1}, x_{2}.

Prove that f is one-to-one.
2. Prove the following theorem (showing a Venn diagram is not enough!)

Theorem 1 Let A, B, C be any sets. Then

$$
[(A \cap B)=C] \Rightarrow[(A \cup C)=A]
$$

3. Prove that the sum of 3 consecutive integers is divisible by 3 .
4.a) Prove this theorem:

Theorem $2 \forall x \in \mathbb{R}, \exists y \in \mathbb{R}\left[x^{2}=y-1\right]$.
b) Give a counterexample which disproves the following conjecture when the quantifiers are switched:

Conjecture $1 \exists y \in \mathbb{R} \forall x \in \mathbb{R}\left[x^{2}=y-1\right]$.
5. Prove that $n^{4}-n^{2}$ is divisible by 3 for all $n \in \mathbb{N}$.

