CS 1050 -Proofs

Practice Midterm 2

1. Negate the following sentences:
a) For all integers $n \geq 4$, there exists $c \in \mathbb{R}$ such that $n^{100} \geq 2^{n}$.
b) The square of an integer is never odd.
c) $\forall x \in \mathbb{R} \forall y \in \mathbb{R}[x>y]$ or $[x<y]$.
d) $\forall x \in \mathbb{P} \exists y \in \mathbb{P}\left[x^{2}=y^{2}\right]$ and $[x \neq y]$.
2. Prove the following theorem using induction.

Theorem 1. For all $n \in \mathbb{Z}^{+}$,

$$
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} .
$$

3. Let $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}$ be defined by

$$
f\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}, 2 x_{1}-x_{2}\right)
$$

for all reals x_{1}, x_{2}.
Prove that f is invertible.
4. Let $a_{1}=5, a_{2}=13$, and, for $n \geq 2$, let $a_{n+1}=5 a_{n}-6 a_{n-1}$.

Prove the following theorem.
Theorem 2. For all $n \in \mathbb{Z}^{+}, a_{n}=3^{n}+2^{n}$.
5. Prove that for all integers $n \geq 1,8^{n}-2^{n}$ is a multiple of 6 .

