CS 1050 –Proofs Practice Midterm 2

- 1. Negate the following sentences:
 - a) For all integers $n \ge 4$, there exists $c \in \mathbb{R}$ such that $n^{100} \ge 2^n$.
 - b) The square of an integer is never odd.
 - c) $\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ [x > y] \text{ or } [x < y].$
 - d) $\forall x \in \mathbb{P} \ \exists y \in \mathbb{P} \ [x^2 = y^2] \text{ and } [x \neq y].$
- 2. Prove the following theorem using induction.

Theorem 1. For all $n \in \mathbb{Z}^+$,

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

3. Let $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ be defined by

$$f(x_1, x_2) = (x_1 + x_2, 2x_1 - x_2)$$

for all reals x_1, x_2 .

Prove that f is invertible.

4. Let $a_1 = 5$, $a_2 = 13$, and, for $n \ge 2$, let $a_{n+1} = 5a_n - 6a_{n-1}$.

Prove the following theorem.

Theorem 2. For all $n \in \mathbb{Z}^+$, $a_n = 3^n + 2^n$.

5. Prove that for all integers $n \ge 1, 8^n - 2^n$ is a multiple of 6.