CS 1050 Practice Midterm Solutions

1. Lemma: Let $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ by $f\left(x_{1}, x_{2}\right)=\left(2 x_{1}+x_{2}, 3 x_{1}-x_{2}, 2 x_{1}+x_{2}\right)$ for all reals x_{1}, x_{2}. Then f is one-to-one.

Proof: Let $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$ be elements of $\mathbb{R} \times \mathbb{R}$ such that $f\left(x_{1}, x_{2}\right)=f\left(y_{1}, y_{2}\right)$. Then $\left(2 x_{1}+x_{2}, 3 x_{1}-x_{2}, 2 x_{1}+x_{2}\right)=\left(2 y_{1}+y_{2}, 3 y_{1}-y_{2}, 2 y_{1}+y_{2}\right)$, and hence it follows that $2 x_{1}+x_{2}=2 y_{1}+y_{2}$ and $3 x_{1}-x_{2}=3 y_{1}-y_{2}$. Adding these two equations, we find that $5 x_{1}=5 y_{1}$ and therefore $x_{1}=y_{1}$. Similarly, subtracting 3 times the first equation from twice the second equation, we find

$$
3\left(2 x_{1}+x_{2}\right)-2\left(3 x_{1}-x_{2}\right)=3\left(2 y_{1}+y_{2}\right)-2\left(3 y_{1}-y_{2}\right) .
$$

Simplifying, we find that $5 x_{2}=5 y_{2}$ so $x_{2}=y_{2}$. Therefore, whenever $f\left(x_{1}, x_{2}\right)=f\left(y_{1}, y_{2}\right)$, it must be that $\left(x_{1}, x_{2}\right)=\left(y_{1}, y_{2}\right)$ and so f is one-to-one.
2. Theorem: Let A, B, C be any sets. Then

$$
[(A \cap B)=C] \Rightarrow[(A \cup C)=A] .
$$

Proof: We will show that $A \cup C=A$ by first showing that $A \subseteq A \cup C$ and then that $A \cup C \subseteq A$ assuming that $A \cap B=C$. The first part is immediate since for any element $x \in A$, we also have that $x \in A \cup C$ (since $x \in(A \cup C)$ means $x \in A$ or $x \in C$ and we know $x \in A$).

For the other direction, we assume that $x \in(A \cup C)$ so $x \in A$ or $x \in C$. If $x \in C$, then $x \in A \cap B$ (because $C=A \cap B$), which implies that $x \in A$ and $x \in B$. Thus, both cases ($x \in A$ or $x \in C$) imply that $x \in A$, so $A \cup C \subseteq A$.

Together these two directions demonstrate that $A=A \cup C$.
3. Lemma: The sum of 3 consecutive integers is divisible by 3 .

Proof: Let $x, x+1, x+2 \in \mathbb{Z}$ be any three consecutive integers. Then their sum can be written as

$$
x+(x+1)+(x+2)=3 x+3=3(x+1) .
$$

Since $x+1$ is an integer, the sum $3(x+1)$ must be divisible by 3 .
4.a) Prove this theorem:

Theorem 1. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}\left[x^{2}=y-1\right]$.
Proof: Let $x \in \mathbb{R}$. Let $y=1+x^{2}$ which is in \mathbb{R} since the reals are closed under multiplication and addition. Therefore, since x was an arbitrary element in \mathbb{R} we have proven the theorem.
b) Give a counterexample which disproves the following conjecture when the quantifiers are switched:

Conjecture 1. $\exists y \in \mathbb{R} \forall x \in \mathbb{R}\left[x^{2}=y-1\right]$.
To disprove this conjecture we need to show the negation, namely $\forall y \in \mathbb{R} \exists x \in \mathbb{R}$ such that $x^{2} \neq y-1$. Let $y \in \mathbb{R}$. Let $x=\sqrt{y}$. Notice that $x^{2} \neq y-1$. We have shown that for all $y \in \mathbb{R}$ we can find an $x \in \mathbb{R}$ such that the proposition is false, it must be that the conjecture is false.
5. Theorem: $n^{4}-n^{2}$ is divisible by 3 for all $n \in \mathbb{N}$.

Proofs: If $n \in \mathbb{N}$, then either $n=3 x$ or $n=3 x+1$ or $n=3 x+2$, for some $x \in \mathbb{Z}$.
Case 1: If $n=3 x$, then $n^{4}-n^{2}=81 x^{4}-9 x^{2}=3\left(27 x^{4}-3 x^{2}\right)$, which is divisible by 3 .
Case 2: If $n=3 x+1$, then

$$
\begin{gathered}
n^{4}=n^{2}=81 x^{4}+108 x^{3}+54 x^{2}+9 x+1-\left(9 x^{2}+6 x+1\right) \\
=3\left(27 x^{4}+36 x^{3}+15 x^{2}+x\right)
\end{gathered}
$$

which is divisible by 3 .

Case 3: If $n=3 x_{2}$, then

$$
\begin{gathered}
n^{4}=n^{2}=81 x^{4}+216 x^{3}+216 x^{2}+72 x+16-\left(9 x^{2}+12 x+4\right) \\
=3\left(27 x^{4}+72 x^{3}+68 x^{2}+20 x+4\right),
\end{gathered}
$$

which is also divisible by 3 .
Since we have shown it in all three cases, it follows that $n^{4}-n^{2}$ is always divisible by 3 .

