Midterm 2
Midterm 1 Review: Midterm 1 Study Guide
Section 2.2: The Inverse of a Matrix
Definitions
· Invertible Matrix
· An n x n matrix A where [image: {"aid":null,"backgroundColor":"#ffffff","id":"6","code":"$$AA^{-1}=I$$","font":{"family":"Lora","size":11,"color":"#000000"},"type":"$$","backgroundColorModified":null,"ts":1634594714131,"cs":"vUnLYAHQ2TLhMiZGHJjnRQ==","size":{"width":62,"height":12}}]
· Inverse of a Matrix
· A-1 where [image: {"aid":null,"backgroundColor":"#ffffff","id":"6","code":"$$AA^{-1}=I$$","font":{"family":"Lora","size":11,"color":"#000000"},"type":"$$","backgroundColorModified":null,"ts":1634594714131,"cs":"vUnLYAHQ2TLhMiZGHJjnRQ==","size":{"width":62,"height":12}}]
· Singular
· Not invertible
· Determinant of a 2x2 matrix
· ad - bc
· Elementary Matrix (E)
· Matrix obtained by performing a single row operation on an identity matrix
· Are invertible: inverse of an elementary matrix, E, is another elementary matrix of the same type that transforms E back to I
· All elementary matrices are invertible
· Row Equivalent Matrices
· Matrices that can transform into each other through a sequence of elementary row operations

Key Notes
· Invertible = nonsingular
· Not invertible = singular
· Inverse of a 2x2 Matrix
· [image: {"backgroundColorModified":null,"code":"\\begin{lalign*}\n&{A=\\begin{bmatrix}\n{a}&{b}\\\\\n{c}&{d}\\\\\n\\end{bmatrix}}\\\\\n&{A^{-1}=\\frac{1}{ad-bc}\\begin{bmatrix}\n{d}&{-b}\\\\\n{-c}&{a}\\\\\n\\end{bmatrix}}\t\n\\end{lalign*}","aid":null,"id":"7","type":"lalign*","font":{"size":11,"color":"#000000","family":"Lora"},"backgroundColor":"#ffffff","ts":1634595144838,"cs":"fnX+yaiiFz28NI7GExbxLg==","size":{"width":160,"height":74}}]
· If (ad - bc) = 0, then A is not invertible
· Ax = b can be rewritten using inverses only if A is invertible
· [image: {"type":"align*","aid":null,"code":"\\begin{align*}\n{Ax\\,}&={\\,b}\\\\\n{A^{-1}A\\,x}&={A^{-1}b}\\\\\n{\\,x}&={A^{-1}b}\t\n\\end{align*}","backgroundColor":"#ffffff","font":{"color":"#000000","size":11,"family":"Lora"},"id":"8","backgroundColorModified":null,"ts":1634595634882,"cs":"SqucobjGmgwAF+Xn9qpH8w==","size":{"width":97,"height":52}}]
· Of course, you can still use the row reduction method to solve Ax = b
· For all b in Rn, x = A-1b is a unique solution
· Invertible matrices have no free variables
· Unique solution
· Product of n x n invertible matrices is invertible
· Inverse of product is the product of the inverses in reverse order
· When an elementary row operations is performed on an m x n matrix A, the resulting matrix can be written as EA
· What if we had multiple elementary row operations on A?
· [image: {"backgroundColor":"#ffffff","aid":null,"backgroundColorModified":null,"type":"$$","id":"9","font":{"color":"#000000","family":"Lora","size":11},"code":"$$E_{k}...E_{2}E_{1}A$$","ts":1634607937879,"cs":"P5JQKUX9q4Wf0p00JyLHeg==","size":{"width":80,"height":12}}]
· Method to find the inverse
· Row reduce A to the identity matrix while performing the same row operations on the identity matrix at the same time
· [A | I] => [I | A-1]
· A matrix is invertible if and only if it is row equivalent to the identity
· Pivots in every row and column (onto & one-to-one)

Section 2.3: Characterizations of Invertible Matrices
Definitions
· Linear Transformation
· Mapping between two vector spaces (Rn’s) that preserves all vector addition & scalar properties
· Invertible Linear Transformation
· Linear transformation T: Rn -> Rn is invertible if there is another linear transformation S: Rn -> Rn such that:
· S(T(x)) = x for all x in Rn
· T(S(x)) = x for all x in Rn
· Equivalent to saying:
· A-1Ax = (I)x

Key Notes
· The IMT
· [image: ]
· Let A and B be square matrices:
· If AB = I, then A and B are both invertible
· B = A-1 & A = B-1
· How to determine if a linear transformation is invertible?
· Let a matrix A represent the linear transformation
· If A is invertible, then the linear transformation is invertible
· [image: {"code":"\\begin{lalign*}\n&{\\begin{bmatrix}\n{-1}&{0}\\\\\n{0}&{1}\\\\\n\\end{bmatrix}:\\,reflection\\,through\\,y-axis\\,\\left(invertible\\right)}\\\\\n&{\\begin{bmatrix}\n{1}&{0}\\\\\n{0}&{0}\\\\\n\\end{bmatrix}:\\,projection\\,onto\\,\\,x-axis\\,\\left(not\\,invertible\\right)}\t\n\\end{lalign*}","id":"11","font":{"family":"Lora","size":11,"color":"#000000"},"type":"lalign*","backgroundColorModified":null,"aid":null,"backgroundColor":"#ffffff","ts":1634609381300,"cs":"NMhRvP8aA6horS0m2lAK2A==","size":{"width":320,"height":76}}]

Section 2.4: Partitioned Matrices
Definitions
· Partitioned Matrix
· Matrix divided up into separate blocks
· Block Diagonal Matrix
· A partitioned matrix where all blocks except the main diagonal are 0’s
· Is invertible if the main diagonal blocks are invertible

Key Notes
· Adding 2 partitioned matrices A and B
· A and B must be the same size and partitioned in the exact same way
· Add block by block
· Scaling partitioned matrices
· Scale block by block
· Multiplying 2 partitioned matrices A and B (A*B)
· Column partition of A must equal row partition of B
· Number of columns in partition A = number of rows in partition B
· Just like multiplying regular matrices
· (2 x 2) * (2 x 1) => (2 x 1)
· (3 x 4) * (4 x 1) => (3 x 1)
· Inverses of Partitioned Matrices
· [image: {"font":{"size":11,"family":"Lora","color":"#000000"},"backgroundColor":"#ffffff","type":"lalign*","aid":null,"id":"12","code":"\\begin{lalign*}\n&{\\begin{bmatrix}\n{A}&{B}\\\\\n{0}&{C}\\\\\n\\end{bmatrix}\\begin{bmatrix}\n{X}&{Y}\\\\\n{Z}&{W}\\\\\n\\end{bmatrix}=\\begin{bmatrix}\n{I_{n}}&{0}\\\\\n{0}&{I_{n}}\\\\\n\\end{bmatrix}:\\,\\left(A,\\,B,\\,and\\,C\\,are\\,invertible\\right)}\\\\\n&{AX\\,+\\,BZ\\,=\\,I_{n}}\\\\\n&{AY\\,+\\,BW\\,=\\,0}\\\\\n&{0X\\,+\\,CZ\\,=\\,0}\\\\\n&{0Y\\,+\\,CW\\,=\\,I_{n}}\\\\\n&{Solve\\,for\\,X,Y,Z,W\\,in\\,terms\\,of\\,A,B,C}\t\n\\end{lalign*}","backgroundColorModified":null,"ts":1634611247719,"cs":"fdNRbdMkJTV4lq1PLpzRuA==","size":{"width":381,"height":130}}]

Section 2.5: Matrix Factorizations
Definitions
· Factorization of a matrix
· Expression of a matrix as the product of two or more matrices
· Row interchanges
· Swapping rows when row reducing
· Lower triangular matrix
· Entries above the main diagonal are all 0’s
· Upper triangular matrix
· Entries below the main diagonal are all 0’s
· Algorithm for an LU Factorization
· 1. Reduce A to an echelon form U by a sequence of row replacement operations, if possible.
· 2. Place entries in L such that the same sequence of row operations reduces L to I.

Key Notes
· LU Factorization
· Why do we use it?
· More efficient to solve a sequence of equations with the same coefficient matrix (Ax = b1, Ax = b2, ... , Ax = bn) by LU factorization than row reducing the equations every single time
· Let A be an m x n matrix that can be row reduced to echelon form without row exchanges, then:
· [image: ]
· L: m x m lower triangular matrix with one’s on the main diagonal
· U: m x n echelon form of A
· Rewriting Ax = b using A = LU
· [image: ]
· Ax = b -> L(Ux) = b
· The LU Factorization Algorithm
· How do we get U?
· Row reduce A to echelon form using only row replacements that add a multiple of one row to another below it
· How do we get L?
· Take the row replacement operations you did on A when getting echelon form
· Basically: find the elementary matrices that transform A into U
· Then, reverse the signs and input them in their respective spots in the m x m identity matrix
· Replace the 0’s below the main diagonal with the row replacement “coefficients”
· Basically: after finding all the elementary matrices, take their inverses
· [image: ]
· Using the LU Decomposition
· After constructing A = LU, solve Ax = LUx = b by:
· 1. Forward solve for y in Ly = b
· R1(x) + R2 -> R2
· Modify rows below using above rows
· 2. Backwards solve for x in Ux = y
· R2(x) + R1 -> R1
· Modify rows above using below rows

Section 2.6: The Leontief Input-Output Model
Definitions
· Production vector in Rn (x)
· Lists the output of each sector for one year
· Final demand vector (d)
· Lists the value of goods and services produced for the consumers (nonproductive part of the economy)
· Intermediate demand (Cx)
· The demand for goods and services that the producers (sectors) need as inputs for their own production
· Ex: electricity sector needs inputs from the water sector and vice versa
· Consumption matrix (C)
· How much each sector consumes from other sectors in terms of percentages
· Column sum
· The sum of the entries in a column

Key Notes
· The Leontief Input-Output Model (Production Equation)
· [image: ]
· Can be rewritten as:
· (I - C)x = d
· Solve for x (amount produced) by row reduction
· x = (I - C)-1 * d
· Solve for x (amount produced) by multiplying
· For a good economy, the column sum of each sector should be less than 1
· A sector should in general require less than one unit’s worth of inputs to produce one unit of output
· Output vector (x)
· xi: entry i of vector x
· Number of units produced by sector i
· Internal consumption (C)
· 2 equivalent ways of defining entries of C where an entry is ci, j:
· Sector i sends a proportion of its units to sector j
· Sector j requires a proportion of the units created by sector i
· Consumption matrix (Cx)
· Total output for each sector (per one unit) is the sum of the columns for each sector
· A Formula for (I - C)-1
· As an economy is introduced to a demand vector, the equation starts off as:
· x = d
· However, production will require intermediate demand from other sectors, and then that intermediate demand will require more inputs from even more sectors
· x = d + Cd + C2d + C3d + …
· => (I + C + C2 + C3)d
· [image: ]
· We can approximate (I - C)-1 by making m as large as possible
· Add as many intermediate demands as we can
· Economic Importance of Entries in (I - C)-1
· Entries used to predict how the production x will have to change when the final demand d changes
· Remember: x = (I - C)-1 * d
· The entries in each column of (I - C)-1 are the increased amounts each sector has to produce in order to satisfy an increase of 1 unit in the final demand

Section 2.7: Applications to Computer Graphics
Definitions
· Homogeneous coordinates
· Each point (x, y) in R2 can be identified with the point (x, y, 1) on the plane in R3 that lies one unit above the xy - plane
· Composite transformations
· Multiplication of 2 or more basic transformations

Key Notes
· Why do we use homogeneous coordinates?
· Translations are not linear transformations
· Homogeneous coordinates are allowed to be scalars
· (3, 5, 1) = (6, 10, 2)
· (x, y) -> (x + h, y + k)
· Translation cannot be represented by an R2 matrix multiplication
· (x, y, 1) -> (x + h, y + k, 1)
· [image: ]
· Translation not possible if we used a 2x2 identity matrix
· Linear transformations in R2 represented with homogeneous coordinates are written as partitioned matrices:
· [image: {"code":"$$\\begin{bmatrix}\n{A}&{0}\\\\\n{0}&{1}\\\\\n\\end{bmatrix}$$","id":"1","backgroundColor":"#ffffff","font":{"size":11,"family":"Lora","color":"#000000"},"backgroundColorModified":null,"type":"$$","aid":null,"ts":1633013174212,"cs":"TrdjD2DxQERjK76eeRsT5A==","size":{"width":40,"height":34}}] where A is a 2x2 matrix
· Examples
· [image: ]
· Composite Transformations
· “Add” on more transformation matrices to the left of the other transformations
· First transformation is always the rightmost (modifies the x vector first)
· Homogeneous 3D Coordinates
· (X, Y, Z, H) are homogeneous coordinates for (x, y, z) if H ≠ 0 and
· [image: ]

Section 2.8: Subspaces of Rn
Definitions
· Subset of Rn
· Any collection of vectors that are in Rn
· Subspace of Rn
· A subset H in Rn that has 3 properties:
· The zero vector is in H
· [image: {"type":"$$","font":{"family":"Lora","color":"#000000","size":11},"aid":null,"backgroundColorModified":null,"backgroundColor":"#ffffff","id":"2","code":"$$\\overrightarrow{u}+\\overrightarrow{v}\\,\\epsilon \\,H$$","ts":1633573961780,"cs":"FVWNclP80cqp/2eFHTVRBw==","size":{"width":70,"height":16}}] (closed under addition)
· [image: {"backgroundColorModified":null,"font":{"family":"Lora","size":11,"color":"#000000"},"code":"$$c\\overrightarrow{u}\\,\\epsilon\\,H$$","backgroundColor":"#ffffff","type":"$$","id":"3","aid":null,"ts":1633574000519,"cs":"ui3eAEW1D008/aeSiG4SSQ==","size":{"width":44,"height":14}}] (closed under scalar multiplication)
· Subspace can be written as the Span{} of some amount of linearly independent vectors
· Column Space of a Matrix A (m x n)
· Col A: the subspace of Rm spanned by {a1 , … , an}
· Essentially all the pivot columns
· Null Space of a Matrix A (m x n)
· Null A: the subspace of Rn spanned by the set of all vectors x that solve Ax = 0
· Basis for a Subspace H of Rn
· A linearly independent set in H that spans H
· DOES NOT CONTAIN THE ZERO VECTOR (BECAUSE IT IS LINEARLY INDEPENDENT) UNLIKE THE SPAN
· Standard Basis for Rn
· {e1 , … , en}

Key Notes
· If v1 and v2 are in Rn and H = Span{v1 , v2}, then H is a subspace of Rn
· v1 and v2 must be in Rn for this relation to work
· For v1, … , vp in Rn, the set of all linear combinations of  v1, … , vp is a subspace of Rn
· Span{v1 , … , vp} = subspace spanned by v1 , … , vp
· Is b in the column space of A?
· Same as : Is b a linear combination of A?
· Same as : Is b in the Span of A?
· Is H a subspace of Rn?
· Basically asking if H has n linearly independent columns
· Does H have no free variables?
· Subspaces vs. Bases
· Subspaces => Span{v1 , … , vn}
· Includes the 0 vector
· Bases	       => {v1 , … , vn}
· Defining a basis for column space A
· Number of entries for each vector = number of rows in matrix A
· Number of vectors in the basis = number of pivot columns
· What vectors can you include in the basis?
· Scalar multiples
· The identity matrix columns only if every column is pivotal in A
· Finding the Column Space
· Row reduce the matrix
· Row operations do not affect linear dependence relations
· Determine the pivot columns
· Create a basis/subspace using the pivot columns in the original matrix
· Not the row reduced one
· If every column is linearly independent, then the elementary vectors are included in the column space
· Linear combinations of elementary vectors can get you any column of the original matrix
· Finding the Null Space
· Determine all the free variables
· Rewrite system in parametric vector form
· Vectors created in parametric vector form generate the null space

Section 2.9: Dimension and Rank
Definitions
· Coordinates
· Weights that map our vectors to get to some point in the span of the vectors
· Coordinate Vector
· [image: ]
· Dimension of a Subspace
· dim H: the number of vectors in a basis of H
· dim{0} = 0
· Rank of a Matrix A
· Dimension of the column space of A
· Number of pivots in A

Key Notes
· Why we choose to write bases:
· Each vector in H can be written in only one way as a linear combination of the basis vectors
· A plane through 0 in R3 is two-dimensional
· 3x3 matrix A has 2 pivots
· A line through 0 in R2 is one-dimensional
· 2x2 matrix A has one pivot
· Any two choices of bases of a non-zero subspace H have the same dimension

· dim Rn = n
· dim(Col A) = number of pivots
· dim(Null A) = number of free variables
· dim(Col A) = rank A
· Rank Theorem
· If A has n columns, then:
· rank A + dim(Null A) = n
· Number of pivots + number of free variables = number of columns
· Basis Theorem
· Any two bases for a subspace have the same dimension (cardinality)
· Many choices for the basis of a subspace
· Continuation of the Invertible Matrix Theorem with Rank
· [image: ]

Section 3.1: Introduction to Determinants
Definitions
· Ai j submatrix
· Delete the ith row and jth column of matrix A
· Remaining elements will form the new submatrix
· Determinant for a 2x2
· A = [image: {"id":"4","aid":null,"backgroundColor":"#ffffff","type":"$$","font":{"color":"#000000","family":"Lora","size":11},"backgroundColorModified":null,"code":"$$\\begin{bmatrix}\n{a}&{b}\\\\\n{c}&{d}\\\\\n\\end{bmatrix}$$","ts":1633579727224,"cs":"yFZBl+F9xIJZkYrCd397yg==","size":{"width":37,"height":34}}] -> det A = ad - bc
· Cofactor expansion
· A way to solve determinants for square matrices that are 3x3 and greater

Key Notes
· Signs of cofactor expansions
· Depends on position of element ai j in the matrix
· [image: {"aid":null,"code":"$$\\begin{bmatrix}\n{+}&{-}&{+}&{-}\\\\\n{-}&{+}&{-}&{+}\\\\\n{+}&{-}&{+}&{-}\\\\\n{-}&{+}&{-}&{+}\\\\\n\\end{bmatrix}$$","backgroundColorModified":null,"font":{"size":11,"family":"Lora","color":"#000000"},"type":"$$","id":"5","backgroundColor":"#ffffff","ts":1633579991350,"cs":"1kVXdtNsNWY2B2VXAso+FQ==","size":{"width":100,"height":76}}]
· Shortcut for finding the determinant
· Row reduce to REF
· Effects of row operations on determinant covered in 3.2
· Multiply all the numbers on the main diagonal

Section 3.2: Properties of Determinants
Definitions
· Column Operations
· Same effect on determinants as row operations
· This is true because the determinant of A = determinant of AT (transpose)

Key Notes
· Row operations on determinants
· Row replacement: nothing
· Row swap: multiply determinant by negative one
· Row scale: multiply determinant by scale
· Summary of elementary matrices’ determinants
· [image: ]
· More specific example of row scaling on determinants
· [image: {"backgroundColor":"#ffffff","font":{"size":11,"family":"Lora","color":"#000000"},"type":"$$","aid":null,"backgroundColorModified":null,"id":"13","code":"$$\\begin{bmatrix}\n{\\cdot}&{\\cdot}&{\\cdot}\\\\\n{5k}&{-2k}&{3k}\\\\\n{\\cdot}&{\\cdot}&{\\cdot}\\\\\n\\end{bmatrix}=k\\begin{bmatrix}\n{\\cdot}&{\\cdot}&{\\cdot}\\\\\n{5}&{-2}&{3}\\\\\n{\\cdot}&{\\cdot}&{\\cdot}\\\\\n\\end{bmatrix}$$","ts":1634611865326,"cs":"PL5iSPeW27l8ecoU2/32vg==","size":{"width":208,"height":56}}]
· Row divided by k
· Determinant is multiplied by 1/k
· If A is invertible (every column is pivotal)
· det A ≠ 0
· If A is not invertible
· det A = 0
· At least one entry on the main diagonal of REF is 0
· [image: ]
· When A is not invertible, the rows are linearly dependent
· If A is square, then the columns are also linearly dependent
· det A = det AT
· det AB = (det A)(det B)
· det A-1 = 1 / (det A)

Section 3.3: Volume and Linear Transformations
Definitions
· Parallelepiped: a parallelogram in Rn where n > 2

Key Notes
· If A is a 2x2 matrix:
· Area of the parallelogram determined by the columns of A is | det A |
· If A is a 3x3 matrix:
· Area of the parallelepiped determined by the columns of A is | det A |
· Row/column swaps and replacements do not affect the absolute value of the determinant
· Linear transformations on a parallelepiped
· Area of T(S) = | det A | * { area of S }
· T: linear transformation determined by matrix A
· S: parallelogram

Section 4.9: Applications to Markov Chains
Definitions
· Probability vector
· A vector with nonnegative entries that sum to 1
· Stochastic matrix
· A square matrix whose columns are probability vectors
· Markov Chain
· A sequence of probability vectors {x0, x1, x2, …} together with a stochastic matrix {P} such that:
· [image: {"font":{"family":"Lora","size":11,"color":"#000000"},"id":"14","backgroundColor":"#ffffff","code":"$$x_{1}=Px_{0}\\,,\\,\\,\\,\\,x_{2}=Px_{1},\\,\\,\\,\\,x_{k+1}=Px_{k}$$","aid":null,"type":"$$","backgroundColorModified":null,"ts":1634614895464,"cs":"OAyBvS9WurLcLzIYbuUZ/Q==","size":{"width":226,"height":12}}]
· Steady State Vector
· A probability q such that Pq = q
· Every stochastic matrix has a steady state vector
· Regular stochastic matrix
· Stochastic matrix where some power of it will contain only strictly positive entries
· Pk where all entries > 0

Key Notes
· How to find the next outcome of a Markov Chain?
· Simply multiply P by xk to find xk+1
· How to find a steady state vector?
· [image: {"backgroundColor":"#ffffff","backgroundColorModified":null,"type":"lalign*","aid":null,"font":{"size":11,"color":"#000000","family":"Lora"},"id":"15","code":"\\begin{lalign*}\n&{Pq=q}\\\\\n&{Pq-q=0}\\\\\n&{\\left(P-I\\right)q=0}\\\\\n\\end{lalign*}","ts":1634615222250,"cs":"d2n+2oA85V7ujLAIHqQj9g==","size":{"width":80,"height":52}}]
· After finding a basis for the null space of (P - I) q = 0, remember to make sure that the column sum is 1
· Steady state vector is a probability vector
· The initial state has no effect on the long term behavior of the Markov Chain

Section 5.1: Eigenvectors and Eigenvalues
Definitions
· Eigenvector of an n x n matrix A:
· Nonzero vector x such that Ax = λx for some scalar λ
· Eigenvalue of A:
· A scalar λ where there is a nontrivial solution x of Ax = λx
· Eigenspace of an eigenvalue
· Contains the zero vector and all eigenvectors corresponding to λ

Key Notes
· Determine if a vector x is an eigenvector
· A*x => see if product is a scalar multiple of x
· Finding the eigenvector from an eigenvalue (7)
· Solve (A - 7I)x = 0
· Then, do the parametric vector form of what you have left
· Finding the eigenvalue λ
· Solve (A - λI)x = 0 for a nontrivial solution
· Find the set of all solutions to the null space of (A - λI)
· Eigenvalues of a triangular matrix are the entries on the main diagonal
· 0 is an eigenvalue of A if and only if A is not invertible
· Ax = 0x
· Ax = 0: x is a nontrivial solution if A is not invertible
· Eigenvectors that correspond to distinct eigenvalues are linearly independent
· Opposite is not always true
· [image: {"code":"$$\\begin{bmatrix}\n{1}&{0}\\\\\n{0}&{1}\\\\\n\\end{bmatrix}$$","id":"16","backgroundColor":"#ffffff","backgroundColorModified":null,"font":{"family":"Lora","color":"#000000","size":11},"type":"$$","aid":null,"ts":1634617699379,"cs":"Y5XrQ2oDHcaHGoljQ5Jj1w==","size":{"width":37,"height":34}}]: eigenvectors are linearly independent but have the same eigenvalue

Section 5.2: The Characteristic Equation
Definitions
· The Characteristic Polynomial:
· det(A - λI)
· The Characteristic Equation
· det(A - λI) = 0
· Trace
· Sum of the diagonal entries in a matrix
· Algebraic Multiplicity of an Eigenvalue
· The number of times the eigenvalue shows up as roots of the characteristic polynomial
· Geometric Multiplicity of an Eigenvalue
· The dimension of Null (A - λI) for a given eigenvalue λ

Key Notes
· How to find eigenvalues?
· Solve (A - λI)x = 0 for a nontrivial solution
· Find the set of all solutions to the null space of (A - λI)
· Continuation of IMT
· For A: n x n matrix, A is invertible if and only if:
· The number 0 is not an eigenvalue of A
· The determinant of A is not 0
· Finding the characteristic polynomial using trace and determinant for a characteristic polynomial of 2
· λ2 - λ(trace) + det A
· Warnings:
· Cannot determine the eigenvalues of a matrix from its reduced from
· Row operations change the eigenvalues

Theorems
Chapter 2
Theorem 4: Finding the Inverse of a 2x2 Matrix
[image: ]

Theorem 5: Alternate Method of Finding the Solution Set
[image: ]

Theorem 6: Properties of Invertible Matrices
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Theorem 7: Finding the Inverse of a Matrix
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Theorem 8: The Invertible Matrix Theorem
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Theorem 9: Invertible Linear Transformations
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[image: ]

Theorem 10: Column-Row Expansion of AB
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Theorem 11: Solving the Output Vector (x)
[image: ]

Theorem 12: Finding the Null Space of Matrix A
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Theorem 13: Determining the Column Space of Matrix A
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Theorem 14: The Rank Theorem
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Theorem 15: The Basis Theorem
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Chapter 3
Theorem 1: Cofactor Expansion to find Determinants
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Theorem 2: Shortcut to Computing Determinant
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Theorem 3: Row Operations on Determinants
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Theorem 4: IMT DLC: Determinant
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Theorem 5: Transpose Equivalence for Determinants
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Theorem 6: Multiplicative Property of Determinants
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Theorem 9: Determinants as Area and Volume
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Theorem 10: Linear Transformations on Area/Volume
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Chapter 4
Theorem 18: Long-term Behavior of a Markov Chain
[image: ]

Chapter 5
Theorem 1: Eigenvalues of a Triangular Matrix
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Theorem 2: Eigenvectors for Distinct Eigenvalues
[image: ]
image29.png




image14.png
The Invertible Matrix Theorem

Let A be a square n x n matrix. Then the following statements are equivalent.
That is, for a given A, the statements are either all true or all false.

A is an invertible matrix.

A is row equivalent to the n x n identity matrix.

A has n pivot positions.

The equation Ax = 0 has only the trivial solution.

The columns of A form a linearly independent set.

The linear transformation x > AX is one-to-one.

The equation Ax = b has at least one solution for each b in R”.
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of x.!
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The Invertible Matrix Theorem (continued)

Let A be an n x n matrix. Then the following statements are each equivalent to
the statement that A is an invertible matrix.

The columns of A form a basis of R".

Col A =R"

dimCol A =n

rank A = n

Nul A = {0}

dimNul4 =0

~2w o35 B
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If Ais ann x n matrix and E is an n x n elementary matrix, then
det EA = (det E)(det A)

where
1 if E is a row replacement

det E = { —1 if E is an interchange
r ifEisascale byr
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1y product of
detA = pivots in U
0 when A is not invertible

) when A is invertible
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r1 = Pxy, 9= Px1, Tpr1 = Py
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a b

LetA:I:c 4

]. If ad — be # 0, then A is invertible and

1 d —-b
A =
i

If ad — bc = 0, then A is not invertible.
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If A is an invertible n x n matrix, then for each b in R”, the equation AX = b has
the unique solution x = A~'b.
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. If A is an invertible matrix, then A" is invertible and
AhH'=4
. If A and B are n x n invertible matrices, then so is AB, and the inverse of AB
is the product of the inverses of A and B in the reverse order. That is,
(AB)' = B7'4™!

. If Ais an invertible matrix, then so is AT,and the inverse of A7 is the transpose
of A~ That is,
(AT)™! = (47T
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An n x n matrix A4 is invertible if and only if A is row equivalent to 7,, and in
this case, any sequence of elementary row operations that reduces A4 to 7, also
transforms 7, into A~'.
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The Invertible Matrix Theorem

Let A be a square n x n matrix. Then the following statements are equivalent.
That is, for a given A, the statements are either all true or all false.

A is an invertible matrix.

A is row equivalent to the n x n identity matrix.

A has n pivot positions.

The equation Ax = 0 has only the trivial solution.

The columns of A form a linearly independent set.

The linear transformation x > AX is one-to-one.

The equation Ax = b has at least one solution for each b in R”.

P 0 Qo gl e

The columns of A span R”.
The linear transformation x — Ax maps R" onto R".
There is an n x n matrix C such that CA = 1.

There is an n x n matrix D such that AD

_—

AT is an invertible matrix.
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Let 7 : R” — R" be a linear transformation and let A be the standard matrix for
T.Then T is invertible if and only if A is an invertible matrix. In that case, the
linear transformation S given by S(x) = A~'x is the unique function satisfying
equations (1) and (2).
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S(T(x)) =x forallxin R" (1)
T(S(x)) =x forallxinR" 2
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Column-Row Expansion of AB
If Aism xn and B isn x p,then
row(B)
row»(B)
AB = [colj(A) coly(A) --- col,(A4)] . (1)
row,;(B)
= coly(A) row; (B) + - - + col, (4) row, (B)
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Let C be the consumption matrix for an economy, and let d be the final demand.
If C and d have nonnegative entries and if each column sum of C is less than 1,
then (I — C)™" exists and the production vector

x=(-C)"'d
has nonnegative entries and is the unique solution of

x=Cx+d
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The null space of an m x n matrix A is a subspace of R”. Equivalently, the set of all
solutions of a system Ax = 0 of m homogeneous linear equations in 7 unknowns
is a subspace of R”.
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The pivot columns of a matrix A form a basis for the column space of 4.
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The Rank Theorem
If a matrix A has n columns, then rank A + dimNul A = n.
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The Basis Theorem

Let H be a p-dimensional subspace of R". Any linearly independent set of exactly
p elements in H is automatically a basis for H. Also, any set of p elements of H
that spans H is automatically a basis for H.
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The determinant of an n x n matrix A can be computed by a cofactor expansion
across any row or down any column. The expansion across the ith row using the
cofactors in (4) is

detA = a;,Cjy + a;2Ciz + -+ + a;,Ciyy
The cofactor expansion down the jth column is

det A = a1;Cyj + a2;Caj + -+ + anjCpj
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If A is a triangular matrix, then det A is the product of the entries on the main
diagonal of A.
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Row Operations

Let A be a square matrix.

a. If a multiple of one row of A is added to another row to produce a matrix B,
then det B = det A.

b. If two rows of A are interchanged to produce B, then det B = —det A.

c. If one row of A is multiplied by k to produce B, then det B = k - det A.
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A square matrix A is invertible if and only if det A # 0.
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If A is an n x n matrix, then det A7 = det A.




image26.png
Multiplicative Property
If A and B are n x n matrices, then det AB = (det A)(det B).
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If A is a 2 x 2 matrix, the area of the parallelogram determined by the columns of
A is |det A|. If A is a 3 x 3 matrix, the volume of the parallelepiped determined
by the columns of A is |det A|.
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Let 7 : R> — R2 be the linear transformation determined by a 2 x 2 matrix A. If
S is a parallelogram in R?, then

{area of T'(S)} = |det A| - {area of S} 5)
If T is determined by a 3 x 3 matrix A, and if S is a parallelepiped in R, then
{volume of T(S)} = |det A| - {volume of S} 6)
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If P is an n x n regular stochastic matrix, then P has a unique steady-state vector
q. Further, if x,, is any initial state and x; | = Px; fork = 0,1,2, ..., then the
Markov chain {x; } converges to q as k — o0o.
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The eigenvalues of a triangular matrix are the entries on its main diagonal.
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i s o000 v, are eigenvectors that correspond to distinct eigenvalues A,
of an n x n matrix A, then the set {v,,...,v,} is linearly independent.




image27.png




image8.png




image34.png




