Instructore	Q _o 1	Rarone

	1/- 4
Mamaa	
Name:	

GT username:

Circle your TA/section: (N1) Daniel

(N2) Rebecca

(C1) Rachel

(C2) Lily

- 1. No books or notes are allowed.
- 2. You may use ONLY NON-GRAPHING and NON-PROGRAMABLE scientific calculators. All other electronic devices are not allowed.
- 3. Show all work to receive full credit.
- 4. Write your answers in the box provided.
- 5. Good luck!

Page	Max. Possible	Points
1	20	
2	18	
3	20	
4	22	
5	20	
Total	100	

1. Find the domain of $\frac{\ln(x-1)}{\sqrt{25-x^2}}$. Express your answer in interval notation.(10 pts.)

2. For what x-values is the function f(x) NOT continuous?

(10 pts.)

$$f(x) = \begin{cases} |x| & \text{if } x \le -1\\ 2x + 1 & \text{if } -1 < x < 2\\ \frac{x - 7}{x - 3} & \text{if } x \ge 2 \end{cases}$$

$$\lim_{x\to -1^+} f(x) = 2(-1)+1 = -1 = f(-1) = |-1|=1$$
 explicit cont. ex=-1

$$\lim_{x\to 2^{-}} f(x) = 2(2) + 1 = 5 = f(2) = \frac{z-7}{z-3} = \frac{-5}{1} = 5$$
 Cant @ $x=2$

$$2x+1$$
 cant on $(-1,2)$
 $2x+1$ cant on $(-1,2)$
 $x-3$ has disconfinuity at $x=3$ in $(2,\infty)$.

$$\chi = -1,3$$

3. Use the graph to answer the questions.

(3 pts. each)

(A)
$$\lim_{x\to 1^-} f(x) =$$
 $+ \infty$ DNE

(D)
$$\lim_{x \to 3} f(x) = 2$$

(B)
$$\lim_{x\to 2^+} f(x) = 1$$

(E)
$$f(3) = 3$$

(C)
$$\lim_{x\to 2} f(x) = DNE$$

(F) On what intervals is
$$f(x)$$
 continuous?
$$(-\infty, 1) \cup (1,2) \cup (2,3) \cup (3,\infty)$$

4. Let $f(x) = \sqrt{x-1}$, and note that $\lim_{x\to 5} f(x) = 2$. Find the largest δ for which

$$|x-5| < \delta \implies |f(x)-2| < 1.$$

(10 pts.)

$$\Leftrightarrow Z < \chi < 10$$

$$S=3$$

$$(m)$$

$$Z$$

$$Z$$

$$Z$$

$$Z$$

$$Z$$

$$Z$$

5. For what value of a is the function g(x) continuous at x=2?

(10 pts.)

$$g(x) = \begin{cases} \frac{x^2 - x - 2}{x^2 - 4} & \text{if } x \neq 2\\ 3ax + 1 & \text{if } x = 2 \end{cases}$$

need $\lim_{x\to 2} f(x) = f(z)$.

$$6a+1=\frac{3}{4}$$
 $6a=-\frac{1}{4}$
 $a=-\frac{1}{2}$

f(z) = 3a(z) + 1 = 6a + 1

6. Find the derivative f'(-1) using the definition of the derivative, where $f(x) = \frac{2}{x}$.

$$\lim_{h \to 0} \frac{2}{x + h} - \frac{2}{x}$$

$$= \lim_{h \to 0} \frac{1}{x} \frac{2x - 2(x + h)}{x(x + h)}$$

$$= \lim_{h \to 0} \frac{1}{x} \frac{2x - 2x - 2h}{x(x + h)} = \lim_{h \to 0} \frac{-2}{x(x + h)}$$

$$= \frac{-2}{x^2}$$

7. Suppose f(x) satisfies f(4) = 2 and the derivative of f(x) is $f'(x) = \frac{1}{2\sqrt{x}}$. What is the equation of the line tangent to the curve y = f(x) at x = 4? (10 pts.)

$$y = m \times +b$$
 $f(4) = z$ means $x = 4$ and $y = 2$.
 $z = m \cdot 4 + b$ $f'(4) = \frac{1}{z \cdot y} = \frac{1}{4}$ means $m = \frac{1}{z \cdot y}$
 $z = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{1}{4}$

8. Suppose
$$f, g, h$$
 are all functions from \mathbb{R} to \mathbb{R} , and that $f(1) = f(2) = 3$, $g(1) = 2$, $g(3) = 4$, $h(2) = 1$, and $h(3) = 5$. Find the following: (2 pts each)

(ii)
$$g \circ f(1) = g(3) = 4$$

(i)
$$\lim_{x\to 1^+} \frac{|1-x|}{x-1} = \lim_{x\to 1^+} \frac{(1-x)}{x-1} = \boxed{1}$$

(ii)
$$\lim_{x\to\infty} \frac{x^3 - x^2 - x + 1}{3x^3 - 100} = \boxed{y_3}$$

(iii)
$$\lim_{x\to 3^{-}} \frac{x^2-9}{x^2-3x} = \lim_{x\to 3^{-}} \frac{(x+3)(x-3)}{x(x-3)} = \frac{6}{3} = \boxed{2}$$

(iv)
$$\lim_{t\to\infty} \frac{2\sqrt{2}}{3e^{-t}+2} = \frac{2\sqrt{2}}{3\cdot O+2} = \frac{2\sqrt{2}}{2} = \sqrt{2}$$