Instructor: Sal Barone (A)

Name: \qquad

GT username: \qquad

1. No books or notes are allowed.
2. All calculators and/or electronic devices are not allowed.
3. Show all work and fully justify your answer to receive full credit.
4. Please BOX your answers.
5. Good luck!

Page	Max. Possible	Points
1	20	
2	20	
3	26	
4	16	
5	18	
Total	100	

1. Let A be the matrix

$$
A=\left[\begin{array}{cccc}
4 & 8 & 2 & 0 \\
1 & 2 & -1 & 2 \\
0 & 0 & 1 & 4 \\
2 & 4 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Find $\operatorname{Nul}(A)$ the null space of A. Be specific in your answer.
(b) Find a basis for $\operatorname{Col}(A)$ the column space of A.
(c) Describe $\operatorname{Nul}(A)$ geometrically in a few words.
(d) Describe $\operatorname{Col}(A)$ geometrically in a few words.
2. Let $A=\left[\begin{array}{ll}4 & 1 \\ 2 & 3\end{array}\right]$.
(a) Find A^{-1}.
(b) Find the coordinate vector \mathbf{x} of $v=\left[\begin{array}{c}-2 \\ 5\end{array}\right]$ in the basis $\left\{\left[\begin{array}{l}4 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 3\end{array}\right]\right\}$.

Hint: these are the columns of A.
(c) Does $\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]$ belong to the column space of A for any $u_{1}, u_{2} \in \mathbb{R}$? Justify your answer for full credit. (4 pts.)
3. Let A be the matrix

$$
A=\left[\begin{array}{ccc}
2 & 0 & 2 \\
-2 & 1 & 2 \\
0 & 1 & 2
\end{array}\right]
$$

(a) Find A^{-1}. (12 pts.)
(b) Find $\operatorname{det}(A)$. (10 pts.)
(c) Check your answer to part (a) by appealing to the definition of inverse. (4 pts.)
4. Find a basis for

$$
\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
0 \\
0 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
3 \\
3 \\
3 \\
3
\end{array}\right]\right\} .
$$

5. If a 6×4 matrix A has exactly 3 pivot positions, then the null space $\operatorname{Nul}(\mathrm{A})$ is a subspace of \mathbb{R}^{k} and the column space $\operatorname{Col}(A)$ is a subspace of \mathbb{R}^{ℓ}. In this problem you will specify the values of k, ℓ, and state the rank and nullity of A.
(2 pts. each)
(a) $\operatorname{Nul}(A)$ is a subspace of \mathbb{R}^{k}. Specify the value of k.
(b) $\operatorname{Col}(A)$ is a subspace of \mathbb{R}^{ℓ}. Specify the value of ℓ.
(c) What is the dimension of $\operatorname{Nul}(A)$ the null space of A ?
(d) What is the rank of A ?
6. Suppose A is a 2×2 matrix and the null space $\operatorname{Nul}(A)$ is the line in \mathbb{R}^{2} given by the equation $y=3 x$.
(a) What is $\operatorname{det}(A)$? Justify your answer for full credit.
(4 pts.)
(b) What is the rank of A ? Justify your answer for full credit.
(4 pts.)
7. Suppose A and B are square 2×2 matrices and you can assume that A, B, and $A+B$ are all invertible, and that $A B=B A$. Find the matrix equal to the following expression, that is, simplify the following expression.

$$
\begin{equation*}
(A+B)^{-1}\left[\left(A^{2}-B^{2}\right) A^{-1}-(A+B)\right] A \tag{5pts.}
\end{equation*}
$$

8. Suppose A is any 3×3 matrix such that the ref of A is $A \sim\left[\begin{array}{lll}1 & 3 & 2 \\ 0 & 5 & 2 \\ 0 & 0 & 4\end{array}\right]$. Is it true that a basis for $\operatorname{Col}(A)$ is $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 5 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 4\end{array}\right]\right\}$? Either give a counter-example or justify your answer in some way for full credit.
