Instructor: Sal Barone (A)

Name: _____

GT username: _____

- 1. No books or notes are allowed.
- 2. All calculators and/or electronic devices are not allowed.
- 3. Show all work and fully justify your answer to receive full credit.
- 4. Please BOX your answers.
- 5. Good luck!

Page	Max. Possible	Points
1	20	
2	20	
3	26	
4	16	
5	18	
Total	100	

1. Let *A* be the matrix

$$A = \begin{bmatrix} 4 & 8 & 2 & 0 \\ 1 & 2 & -1 & 2 \\ 0 & 0 & 1 & 4 \\ 2 & 4 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

(a) Find $Nul(A)$) the null space of A	. Be specific in your answer.	(10 pts.)
-------------------	-------------------------	-------------------------------	------------

(b) Find a basis for Col(A) the column space of A. (6 pts.)

(c) Describe Nul(A) geometrically in a few words. (2 pts.)

(d) Describe Col(A) geometrically in a few words. (2 pts.)

2. Let
$$A = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}$$
.
(a) Find A^{-1} . (8 pts.)

(b) Find the coordinate vector
$$\mathbf{x}$$
 of $v = \begin{bmatrix} -2\\5 \end{bmatrix}$ in the basis $\left\{ \begin{bmatrix} 4\\2 \end{bmatrix}, \begin{bmatrix} 1\\3 \end{bmatrix} \right\}$.
Hint: these are the columns of A. (8 pts.)

(c) Does $\begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ belong to the column space of A for any $u_1, u_2 \in \mathbb{R}$? Justify your answer for full credit. (4 pts.)

3. Let A be the matrix

$$A = \begin{bmatrix} 2 & 0 & 2 \\ -2 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}.$$

(a) Find A^{-1} .

(12 pts.)

(b) Find det(A).

(10 pts.)

(c) Check your answer to part (a) by appealing to the definition of inverse. (4 pts.)

4. Find a basis for

$$(8 \text{ pts.})$$

$$\operatorname{span}\left\{ \begin{bmatrix} 1\\0\\0\\1\end{bmatrix}, \begin{bmatrix} 2\\0\\0\\0\\2\end{bmatrix}, \begin{bmatrix} 0\\0\\0\\0\end{bmatrix}, \begin{bmatrix} 0\\1\\1\\1\\0\end{bmatrix}, \begin{bmatrix} 3\\3\\3\\3\\3\end{bmatrix} \right\}.$$

- 5. If a 6×4 matrix A has exactly 3 pivot positions, then the null space Nul(A) is a subspace of \mathbb{R}^k and the column space $\operatorname{Col}(A)$ is a subspace of \mathbb{R}^{ℓ} . In this problem you will specify the values of k, ℓ , and state the rank and nullity of A. (2 pts. each)
 - (a) $\operatorname{Nul}(A)$ is a subspace of \mathbb{R}^k . Specify the value of k.
 - (b) $\operatorname{Col}(A)$ is a subspace of \mathbb{R}^{ℓ} . Specify the value of ℓ .
 - (c) What is the dimension of Nul(A) the null space of A?
 - (d) What is the rank of A?

- 6. Suppose A is a 2 × 2 matrix and the null space Nul(A) is the line in \mathbb{R}^2 given by the equation y = 3x.
 - (a) What is det(A)? Justify your answer for full credit. (4 pts.)
 - (b) What is the rank of A? Justify your answer for full credit. (4 pts.)

7. Suppose A and B are square 2×2 matrices and you can assume that A, B, and A + B are all invertible, and that AB = BA. Find the matrix equal to the following expression, that is, simplify the following expression. (5 pts.)

$$(A+B)^{-1}[(A^2-B^2)A^{-1}-(A+B)]A$$

8. Suppose A is any 3×3 matrix such that the ref of A is $A \sim \begin{bmatrix} 1 & 3 & 2 \\ 0 & 5 & 2 \\ 0 & 0 & 4 \end{bmatrix}$. Is it true that

a basis for $\operatorname{Col}(A)$ is $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 3\\5\\0 \end{bmatrix}, \begin{bmatrix} 2\\2\\4 \end{bmatrix} \right\}$? Either give a counter-example or justify your answer in some way for full credit. (5 pts.)