1. Let A be the matrix

$$
A=\left[\begin{array}{cccc}
2 & -2 & 1 & -4 \\
1 & 5 & -4 & 4 \\
1 & 2 & 2 & 4 \\
3 & 6 & -3 & 15
\end{array}\right]
$$

(a) Find a basis for the $\lambda=3$ eigenspace of A.
(12 pts.)
(b) Suppose v_{1}, v_{2} are any $\lambda=3$ eigenvectors of A that are all distinct, so $A v_{i}=3 v_{i}$, for $i=1,2$, and $v_{i} \neq v_{j}$ if $i \neq j$. Is the set $\left\{v_{1}, v_{2}\right\}$ a basis for the $\lambda=3$ eigenspace of A ? Justify your answer for full credit.
(6 pts.)
2. Find all real or complex eigenvalues of each matrix and an associated eigenvector for each eigenvalue.
(10 pts. each)
(a) $\left[\begin{array}{cc}7 & 3 \\ -2 & 2\end{array}\right]$
(b) $\left[\begin{array}{cc}3 & 13 \\ -2 & 1\end{array}\right]$
3. Find all eigenvalues of the matrix

$$
\left[\begin{array}{lll}
3 & 0 & 3 \\
0 & 1 & 1 \\
2 & 0 & 2
\end{array}\right]
$$

4. Suppose A is the non-invertible matrix below which has eigenvalue $\lambda=6$. Is A diagonalizable? Justify your answer for full credit.

$$
A=\left[\begin{array}{lllll}
1 & 3 & 1 & 2 & -1 \\
1 & 3 & 1 & 2 & -1 \\
1 & 3 & 1 & 2 & -1 \\
1 & 3 & 1 & 2 & -1 \\
1 & 3 & 1 & 2 & -1
\end{array}\right]
$$

5. Suppose A is a 2×2 matrix with $\lambda=0$ and $\lambda=1$ as eigenvalues. Choose one: (1) show that $A^{2} \mathrm{x}=A \mathrm{x}$ for any x in \mathbb{R}^{2}, or (2) show that $A^{2}=A$.
6. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation which reflects vectors in \mathbb{R}^{2} about the line $y=x$. Find eigenvectors and state the associated eigenvalues for the standard matrix A of this linear transformation. Hint: think geometrically.
7. Find a basis for the $\lambda=a+b$ and the $\lambda=a-b$ eigenspaces of the matrix $\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]$, assuming neither a nor b is zero.
8. Let A be the matrix below. Find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$. Assume none of a, b, c, d, e are zero. Hint: think geometrically and consider the previous problem.
(8 pts.)

$$
\left[\begin{array}{lllll}
a & b & 0 & 0 & 0 \\
b & a & 0 & 0 & 0 \\
0 & 0 & c & 0 & 0 \\
0 & 0 & 0 & d & e \\
0 & 0 & 0 & e & d
\end{array}\right]
$$

9. Let A be a 2×2 matrix which satisfies $A \mathbf{v}_{1}=3 \mathbf{v}_{1}$ and $A \mathbf{v}_{2}=-\mathbf{v}_{2}$, where $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{c}-2 \\ 1\end{array}\right]$. If \mathbf{x} is the vector $\mathbf{x}=\left[\begin{array}{l}8 \\ 6\end{array}\right]$, compute $A^{3} \mathbf{x}$.
