Quiz 2 (12 pm)

1. Write the vector $b = \begin{bmatrix} 5 \\ 1 \\ 4 \end{bmatrix}$ as a linear combination of $v_1 = \begin{bmatrix} -1 \\ 4 \\ 1 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$, or state that this is not possible. Clearly show your work and be clear about what is your answer. (10 pts.)

- 2. For each matrix below, determine if the matrix is in rref or not. If it is, state whether the associated system of linear equations has a unique solution, no solution, or infinitely many solutions.

 (1 pt. each part, 10 total)
 - (a) $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ rref/not rref unique/none/infinitely many
 - (b) $\begin{bmatrix} 1 & 2 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ rref/not rref unique/none/infinitely many
 - (c) $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ rref/not rref unique/none/infinitely many
 - (d) $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ rref/not rref unique/none/infinitely many
 - (e) $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$ rref/not rref unique/none/infinitely many