Intro Lin Alg

Quiz 4 (11 am)

1. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation which associates to each $\mathbf{x} \in \mathbb{R}^2$ the vector obtained from \mathbf{x} by first rotating \mathbf{x} by 90° counter-clockwise and then reflecting the result about the horizontal *x*-axis. Find the standard matrix *A* of *T* as well as the image $T\left(\begin{bmatrix}1\\1\end{bmatrix}\right)$.

Hint: the first column of A *is* $T\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ *and the second column of* A *is* $T\begin{pmatrix} 0 \\ 1 \end{pmatrix}$. (4 pts. ea.)

Determine whether the given vectors are linearly independent or linearly dependent. If the vectors are linearly dependent find a non-trivial linear combination of the vectors which give the zero vector.
(8 pts.)

1		$\lceil 2 \rceil$		[6]
-1	,	2	,	2
0		1		2

3. True or False section.

(1 pt. each)

T/F If A is a 4×3 matrix with 3 pivots, then the columns of A are linearly independent. T/F If Ax = 0 has the trivial solution, then the columns of A are linearly independent. T/F If the columns of A are linearly independent, then Ax = b has a unique solution. T/F The linear transformation with standard matrix $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ rotates vectors in \mathbb{R}^2 by 90° counter-clockwise.