

In-Class Final Exam Review Set A, Math 1554, Fall 2019

Indicate whether the statements are true or false.

true	false	
0	0	If a linear system has more unknowns than equations, then the system has either no solutions or infinitely many solutions.
0	0	A $n \times n$ matrix A and its echelon form E will always have the same eigenvalues.
0	0	$x^2 - 2xy + 4y^2 \ge 0$ for all real values of x and y .
0	0	If matrix A has linearly dependent columns, then $\dim((\mathrm{Row} A)^\perp)>0.$
0	0	If λ is an eigenvalue of A , then dim $(\text{Null}(A - \lambda I)) > 0$.
0	0	If A has QR decomposition $A=QR$, then $\mathrm{Col} A=\mathrm{Col} Q.$
0	0	If A has LU decomposition $A=LU$, then $\operatorname{rank}(A)=\operatorname{rank}(U)$.
0	0	If A has LU decomposition $A = LU$, then $\dim(\text{Null } A) = \dim(\text{Null } U)$.

- 2. Give an example of the following.
 - i) A 4×3 lower triangular matrix, A. such that $\operatorname{Col}(A)^{\perp}$ is spanned by

the vector
$$\vec{v} = \begin{pmatrix} 1\\2\\3\\1 \end{pmatrix}$$
. $A = \begin{pmatrix} 1\\2\\3\\1 \end{pmatrix}$

ii) A 3×4 matrix A, that is in RREF, and satisfies $\dim\left((\operatorname{Row} A)^{\perp}\right)=2$ and $\dim\left((\operatorname{Col} A)^{\perp}\right)=1$

$$2. A = \left(\begin{array}{c} \\ \end{array}\right)$$

3. (3 points) Suppose $A = \begin{pmatrix} 3 & 1 \\ 6 & 2 \end{pmatrix}$. On the grid below, sketch a) Col(A), and b) the eigenspace corresponding to eigenvalue $\lambda = 5$.

(b)
$$\lambda = 5$$
 eigenspace

4.	Fill	in	the	blank

- (a) If $A \in \mathbb{R}^{M \times N}$, M < N, and $A\vec{x} = 0$ does not have a non-trivial solution, how many pivot columns does A have?
- (b) Consider the following linear transformation.

$$T(x_1, x_2) = (2x_1 - x_2, 4x_1 - 2x_2, x_2 - 2x_1).$$

5. Four points in \mathbb{R}^2 with coordinates (t,y) are (0,1), $(\frac{1}{4},\frac{1}{2})$, $(\frac{1}{2},-\frac{1}{2})$, and $(\frac{3}{4},-\frac{1}{2})$. Determine the values of c_1 and c_2 for the curve $y=c_1\cos(2\pi t)+c_2\sin(2\pi t)$ that best fits the points. Write the values you obtain for c_1 and c_2 in the boxes below.

$$c_1 = \boxed{ c_2 = \boxed{ } }$$

In-Class Final Exam Review Set B, Math 1554, Fall 2019

1. Indicate whether the statements are true or false.

true	false
or ac	TOIL

- O For any vector $\vec{y} \in \mathbb{R}^2$ and subspace W, the vector $\vec{v} = \vec{y} \text{proj}_W \vec{y}$ is orthogonal to W.
- O If A is $m \times n$ and has linearly dependent columns, then the columns of A cannot span \mathbb{R}^m .
- O If a matrix is invertible it is also diagonalizable.
- \bigcirc If E is an echelon form of A, then Null A = Null E.
- \bigcirc If the SVD of $n \times n$ singular matrix A is $A = U \Sigma V^T$, then ColA = ColU.
- $\bigcirc \qquad \bigcirc \qquad \text{If the SVD of } n \times n \text{ matrix } A \text{ is } A = U\Sigma V^T, \, r = \text{rank} A \text{, then the first } r \\ \text{columns of } V \text{ give a basis for Null} A.$

2. Give an example of:

- a) a vector $\vec{u} \in \mathbb{R}^3$ such that $\operatorname{proj}_{\vec{p}} \vec{u} = \vec{p}$, where $\vec{u} \neq \vec{p}$, and $\vec{p} = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}$: $\vec{u} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$:
- b) an upper triangular 4×4 matrix A that is in RREF, 0 is its only eigenvalue, and its corresponding eigenspace is 1-dimensional. $A = \begin{pmatrix} & & \\ & & \end{pmatrix}$
- c) A 3 × 4 matrix, A, and Col(A)^{\perp} is spanned by $\begin{pmatrix} 1 \\ -3 \\ -4 \end{pmatrix}$
- d) A 2×2 matrix in RREF that is diagonalizable and not invertible.

3. Suppose $A = \begin{pmatrix} 2 & -1 \\ 4 & -2 \end{pmatrix}$. On the grid below, sketch a) the range of $x \to Ax$, b) $(\operatorname{Col} A)^{\perp}$, (c)

set of solutions to $A\vec{x} = \begin{pmatrix} 3 \\ 6 \end{pmatrix}$.

- (b) $(\operatorname{Col} A)^{\perp}$ x_2 x_3
- (c) solutions x^2 x^2 x^2 x^2

- 4. Matrix A is a 2×2 matrix whose eigenvalues are $\lambda_1 = \frac{1}{2}$ and $\lambda_2 = 1$, and whose corresponding eigenvectors are $\vec{v}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$. Calculate
 - 1. $A(\vec{v}_1 + 4\vec{v}_2)$
 - 2. A^{10}
 - $3. \lim_{k \to \infty} A^k(\vec{v}_1 + 4\vec{v}_2)$

In-Class Final Exam Review Set C, Math 1554, Fall 2019

1. Indicate whether the statements are possible or impossible.

possible	impossible	e
0	0	$Q(\vec{x}) = \vec{x}^T A \vec{x}$ is a positive definite quadratic form, and $Q(\vec{v}) = 0$, where \vec{v} is an eigenvector of A .
0	0	The maximum value of $Q(\vec{x}) = ax_1^2 + bx_2^2 + cx_3^2$, where $a > b > c$, for $\vec{x} \in \mathbb{R}^3$, subject to $ \vec{x} = 1$, is not unique.
0	0	The location of the maximum value of $Q(\vec{x}) = ax_1^2 + bx_2^2 + cx_3^2$, where $a > b > c$, for $\vec{x} \in \mathbb{R}^3$, subject to $ \vec{x} = 1$, is not unique.
0	0	A is 2 × 2, the algebraic multiplicity of eigenvalue $\lambda=0$ is 1, and $\dim(\mathrm{Col}(A)^\perp)$ is equal to 0.
0	0	Stochastic matrix ${\cal P}$ has zero entries and is regular.
0	0	${\cal A}$ is a square matrix that is not diagonalizable, but ${\cal A}^2$ is diagonalizable.
0	0	The map $T_A(\vec{x}) = A\vec{x}$ is one-to-one but not onto, A is $m \times n$, and $m < n$.

2. Transform $T_A = A\vec{x}$ reflects points in \mathbb{R}^2 through the line y = 2 + x. Construct a standard matrix for the transform using homogeneous coordinates. Leave your answer as a product of three matrices.

- 3. Fill in the blanks.
 - (a) $T_A = A\vec{x}$, where $A \in \mathbb{R}^{2\times 2}$, is a linear transform that first rotates vectors in \mathbb{R}^2 clockwise by $\pi/2$ radians about the origin, then reflects them through the line $x_1 = x_2$. What is the value of $\det(A)$?
 - (b) B and C are square matrices with det(BC) = -5 and det(C) = 2. What is the value of $det(B) det(C^4)$?
 - (c) A is a 6×4 matrix in RREF, and rank(A) = 4. How many different matrices can you construct that meet these criteria?
 - (d) $T_A = A\vec{x}$, where $A \in \mathbb{R}^{2\times 2}$, projects points onto the line $x_1 = x_2$. What is an eigenvalue of A equal to?
 - (e) If an eigenvalue of A is $\frac{1}{3}$, what is one eigenvalue of A^{-1} equal to?
 - (f) If A is 30×12 and $A\vec{x} = \vec{b}$ has a unique least squares solution \hat{x} for every \vec{b} in \mathbb{R}^{30} , the dimension of Null A is

4. A is a 2×2 matrix whose nullspace is the line $x_1 = x_2$, and $C = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$. Sketch the nullspace of Y = AC.

5. Construct an SVD of
$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
. Use your SVD to calculate the condition number of A .

Final Exam Review Worksheet, Spring 2020

1. (12 points) Indicate whether the statements are true or false.

		true	false
i)	If $A\vec{x}=\vec{b}$ has infinitely many solutions, then the RREF of A must have a row of zeros.	0	0
ii)	If A is $n \times n$ and $A\vec{x} = \vec{b}$ is inconsistent, then the columns of A are linearly dependent.	0	0
iii)	If A is a 3×3 matrix and $\det(A) = 2$, then $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ is a basis for $\operatorname{Col}(A)$.	0	0
iv)	A basis for a subspace must include the zero vector.	0	0
v)	If the columns of an $n \times n$ matrix span \mathbb{R}^n , then the matrix must be invertible.	0	0
vi)	A matrix, A , and any echelon form of A will have the same column space.	\circ	0
xii)	An $n \times n$ diagonalizable matrix must have n distinct eigenvalues.	\circ	\circ
xiii)	The geometric multiplicity of an eigenvalue is greater than or equal to the algebraic multiplicity of the same eigenvalue.	0	0
ix)	If S is a subspace of \mathbb{R}^8 and $\dim(S)=6,$ then S^\perp is a two-dimensional subspace.	0	0
x)	If two vectors \vec{u} and \vec{v} are orthogonal, then they are linearly independent.	\circ	0
xi)	If A is symmetric, and $v_1 \neq v_2$ are two eigenvectors of A , then v_1 and v_2 are orthogonal.	0	0
xii)	For a symmetric matrix A , the largest value of $\ Ax\ $ subject to the constraint that $\ x\ =1$ is the largest singular value of A .	0	0

- 2. (10 points) Fill in the blanks.
 - (a) List all values of $k \in \mathbb{R}$ such that the vectors $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 3 \\ k \\ -1 \end{pmatrix}$ are linearly dependent.
 - (b) Suppose $\det(A^2B) = 4$, $\det(B) = \frac{1}{3}$, and A and B are $n \times n$ real matrices. List all possible values of $\det(A)$.
 - (c) List all values of k such that $A\vec{x} = \vec{b}$ is inconsistent where $\vec{b} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ and $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 2k \\ 0 & 0 & k \end{pmatrix}$. $k = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 2k \\ 0 & 0 & k \end{bmatrix}$
 - (d) Consider the row operation that reduces matrix *A* to RREF.

$$A = \underbrace{\begin{pmatrix} 0 & 1 & 0 \\ 0 & -5 & 1 \end{pmatrix}}_{A} \sim \underbrace{\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{E_{1}A} = E_{1}A$$

By inspection, E_1 is the elementary matrix $E_1 = \begin{pmatrix} & & \\ & & \end{pmatrix}$.

- (e) If $S = \{ \vec{x} \in \mathbb{R}^4 \, | \, x_1 = x_2 \}$ then dim S =
- (f) If $A = \begin{pmatrix} 1 & 2 \\ 0 & 0 \\ 3 & 6 \end{pmatrix}$, then a non-zero vector in Null A is $\begin{pmatrix} & & \\ & & \end{pmatrix}$.
- (g) If the basis for the column space of an 11×15 matrix consists of exactly three vectors, how many pivot columns does the matrix have?
- (h) If A is a 3×3 matrix with eigenvalues 5 and 1 i, then the third eigenvalue is
- (i) If \vec{v} is the steady-state vector for a regular stochastic matrix, then \vec{v} is an eigenvector of that matrix corresponding to the eigenvalue $\lambda = \boxed{}$.
- (j) List all values of k such that $A = \begin{pmatrix} 4 & k \\ 0 & 4 \end{pmatrix}$ is diagonalizable.

- 3. (6 points) Fill in the blanks.
 - (a) The distance between the vector $\vec{u} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ and the line spanned by $\vec{w} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ is
 - (b) If W is the plane spanned by the vectors $\vec{u} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ and $\vec{v} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, a basis of W^{\perp} is given by $\vec{w} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$.
 - (c) If A is a 3×3 matrix and $\dim(\text{Row}(A)) = 2$, then $\dim(\text{Null}(A^T)) =$
 - (d) If \vec{u} and \vec{v} are two vectors in \mathbb{R}^2 satisfying $||\vec{u}|| = 3$, $||\vec{v}|| = 2$ and $\vec{u} \cdot \vec{v} = \frac{3}{2}$, then the length of the sum of the two vectors is $||\vec{u} + \vec{v}|| = ||\vec{v}||$.
 - (e) Let U be an $n \times n$ matrix with orthonormal columns. Then $U^tU = \underline{\hspace{1cm}}$
 - (f) The maximum value of $Q(\vec{x}) = 10x_1^2 7x_2^2 4x_3^2$ subject to the constraints $\vec{x} \cdot \vec{x} = 1$ and $\vec{x} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 0$ is equal to _____.

4. (8	4. (8 points) Indicate whether the statements are possible or impossible. possible impossible																										
i)	The linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ is onto. $T = Ax$, and A has linearly independent columns.											4	0		C												
ii)	The columns of a matrix with N rows are linearly dependent and span \mathbb{R}^N .												t	0		C	0										
iii)	N	Mat	rix	A i	s n	X	n, A	$\vec{x} =$	$A\bar{y}$	for	sor	ne ā	$\vec{c} \neq \vec{c}$	\vec{y} , an	nd d	im(Nu	llA)	=0).	0		\subset	0			
iv)	<i>P</i> is a stochastic matrix which has zero in the first entry of the first row, but is regular.										e	0															
v)	There is a 2×2 real matrix A and a vector $\vec{u} \neq \vec{0}$, such that $\vec{u} \in \text{Null}(A)$ and $\vec{u} \in \text{Row}(A)$.										t	0	0														
vi)	1	4 is	a r	on	-si	ngı	ılar	ma	trix	wh	ich	is n	ot d	liago	onal	izal	ole.				0	0					
vi)								ector,					tha	t co	rres	pon	d to	dis	tinc	t	0	0					
viii)								or i		5. T	he p	oroje	ectio	on o	of \vec{y} (onto	as	ubs	pac	e	0		C)			

5.	(2 points) Suppose A and B are $n \times n$ matrices and A is symmetric.	Fill in	the circles	next
	to the expressions (if any) that are equal to			
	$(B^TAB)^T$			

$$(B^TAB)$$

Leave the other circles empty.

- $\bigcirc BA^TB^T$
- $\bigcirc B^TAB$

$$\begin{bmatrix} 0 & -2 \\ 0 & 1 \end{bmatrix}$$
, $\sigma_1 = \underline{\hspace{1cm}}$, $\sigma_2 = \underline{\hspace{1cm}}$

5 points) Let
$$A = \begin{pmatrix} -2 & -4 & 0 & 0 & 2 \\ -2 & -4 & 1 & 0 & 0 \\ -2 & -4 & 0 & 2 & 4 \\ -2 & -4 & 0 & 3 & 5 \end{pmatrix}$$
 and $\vec{b} = \begin{pmatrix} -2 & -4 & 0 & 0 & 2 \\ -2 & -4 & 0 & 3 & 5 \end{pmatrix}$

(a) Solve the system $A\vec{x}=\vec{b}$ where A and \vec{b} are as above. Write your answer in parametric vector form for full credit.

(b) Write down a basis for Col(A).

8. (4 points) Consider the following Markov chain.

(b) Use your transition matrix from part (a) to calculate the steady-state probability vector, \vec{q} . Show your work.

9. (3 points) Apply the Gram-Schmidt process to construct an orthogonal basis for $\mathrm{Col}(A)$. Show your work.

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \end{pmatrix}$$

10. (3 points) Construct the LU factorization of the matrix
$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 3 & 0 \end{pmatrix}$$
. Clearly indicate matrices L and U .

11. (5 points) Compute
$$\Sigma$$
 and V in the singular value decomposition of the matrix

$$A = \begin{bmatrix} 1 & 1 \\ 0 & -1 \\ 1 & 0 \end{bmatrix} = U\Sigma V^T$$

$$\Sigma = \begin{bmatrix} - & 0 \\ 0 & - \\ 0 & 0 \end{bmatrix} \qquad V = \begin{bmatrix} - & - \\ - & - \end{bmatrix}$$

12. (5 points) Find matrices ${\cal D}$ and ${\cal P}$ to construct the orthogonal diagonalization of ${\cal A}$. Show your work.