I LIVERS ALGEBRA Wests # Section 6.2 : Orthogonal Sets Chapter 6 : Orthogonality and Least Squares Math 1554 Linear Algebra # Topics and Objectives Topics Learning Objectives Apply the concepts of orthogonality to a) compute orthogonal projections and distances, be express a vector as a linear combination of orthogonal vectors, c) characteria bases for subapaces of Rⁿ, and d) construct orthonormal bases. - 1. Orthogonal Sets of Vectors - 2. Orthogonal Bases and Projections. #### Motivating Question What are the special properties of this basis for \mathbb{R}^3 ? $$\begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}/\sqrt{11}, \quad \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}/\sqrt{6}, \quad \begin{bmatrix} -1 \\ -4 \\ 7 \end{bmatrix}/\sqrt{66}$$ 11/20 - 11/24 7.3,7.4 Thu Studio 1.3 Wed Lecture #### 12/11 - 12/15 Final Exams: MATH 1554 Co #### Orthogonal Vector Sets Definition Section 6.2 Slide 293 A set of vectors $\{\vec{u}_1,\ldots,\vec{u}_p\}$ are an **orthogonal set** of vectors if for each $j\neq k,\ \vec{u}_j\perp\vec{u}_k.$ **Example:** Fill in the missing entries to make $\{\vec{u}_1,\vec{u}_2,\vec{u}_3\}$ an orthogonal set of vectors. Section 6.2: Orthogonal Sets Chapter 6: Orthogonality and Least Squares Math 1554 Linear Algebra $$\vec{u}_1 = \begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix}, \quad \vec{u}_2 = \begin{bmatrix} & -2 \\ & 1 \end{bmatrix}, \quad \vec{u}_3 = \begin{bmatrix} & & \\ & & \end{bmatrix}$$ ## Linear Independence Theorem (Linear Independence for Orthogonal Sets) Let $\{\vec{u}_1,\dots,\vec{u}_p\}$ be an orthogonal set of vectors. Then, for scalars c_1,\dots,c_p , $||c_1\vec{u}_1 + \cdots + c_p\vec{u}_p||^2 = c_1^2||\vec{u}_1||^2 + \cdots + c_p^2||\vec{u}_p||^2$. In particular, if all the vectors \vec{u}_r are non-zero, the set of vectors $\{ \vec{u}_1, \dots, \vec{u}_p \}$ are linearly independent. FIGURE 1 **EXAMPLE 1** Show that $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthogonal set, where $$\mathbf{u}_1 = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} -1/2 \\ -2 \\ 7/2 \end{bmatrix}$$ #### Orthogonal Bases # Theorem (Expansion in Orthogonal Basis) Let $\{\vec{u}_1,\ldots,\vec{u}_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n . Then, for any vector $\vec{w}\in W$, $$\vec{w} = c_1 \vec{u}_1 + \cdots + c_p \vec{u}_p.$$ Above, the scalars are $c_q = \frac{\vec{w} \, \cdot \, \vec{u}_q}{\vec{u}_q \, \cdot \, \vec{u}_q}$ For example, any vector $\vec{w} \in \mathbb{R}^3$ can be written as a linear combination of $\{\vec{e}_1,\vec{e}_2,\vec{e}_3\}$, or some other orthogonal basis $\{\vec{u}_1,\vec{u}_2,\vec{u}_3\}$. #### Example $$\vec{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \vec{u} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}, \quad \vec{v} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \quad \vec{s} = \begin{pmatrix} 3 \\ -4 \\ 1 \end{pmatrix}$$ Let W be the subspace of \mathbb{R}^3 that is orthogonal to $\vec{x}.$ - a) Check that an orthogonal basis for W is given by \vec{u} and $\vec{v}.$ - b) Compute the expansion of \vec{s} in basis W. # THEOREM 4 If $S = \{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^n , then S is linearly independent and hence is a basis for the subspace spanned by S. ### Projections Let \vec{u} be a non-zero vector, and let \vec{v} be some other vector. The **orthogonal projection of** \vec{v} **onto the direction of** \vec{u} is the vector in the span of \vec{u} that is closest to \vec{v} . The vector $\vec{w} = \vec{v} - \mathrm{proj}_{\vec{u}} \vec{v}$ is orthogonal to \vec{u} , so that $\vec{v} = \mathsf{proj}_{\vec{u}} \vec{v} + \vec{w}$ - Let L be spanned by (1,1,1,1) in \mathbb{R}^4 . - 1. Find the projection of $\vec{v}=(-3,5,6,-4)$ onto the line L. - 2. How close is \vec{v} to the line L? #### FIGURE 2 Finding α to make $\mathbf{y} - \hat{\mathbf{y}}$ orthogonal to u. **EXAMPLE 3** Let $\mathbf{y} = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$. Find the orthogonal projection of \mathbf{y} onto \mathbf{u} . Then write \mathbf{y} as the sum of two orthogonal vectors, one in Span $\{\mathbf{u}\}$ and one orthogonal to u. FIGURE 3 The orthogonal projection of y onto a line L through the origin. # Definition # Definition (Orthonormal Basis) An **orthonormal basis** for a subspace W is an orthogonal basis $\{\vec{u}_1,\dots,\vec{u}_p\}$ in which every vector \vec{u}_q has unit length. In this case, for each $\vec{w}\in W$, $$\begin{split} \vec{w} &= [(\vec{w}) \cdot \vec{u}_1] \vec{u}_1 + \dots + [(\vec{w}) \cdot \vec{u}_p] \vec{u}_p \\ \|\vec{w}\| &= \sqrt{[(\vec{w}) \cdot \vec{u}_1]^2 + \dots + [(\vec{w}) \cdot \vec{u}_p]^2} \end{split}$$ ## Example The subspace W is a subspace of \mathbb{R}^3 perpendicular to (1,1,1). Calculate the missing coefficients in the orthonormal basis for W. $$\begin{bmatrix} 1 \\ 0 \end{bmatrix} / \sqrt{}$$ #### Orthogonal Matrices An orthogonal matrix is a square matrix whose columns are orthonormal. Theorem $\overline{ \text{An } m \times n } \text{ matrix } U \text{ has orthonormal columns if and only if } U^T U = I_n.$ Note that this theorem does not apply when n>m. Why? #### Theorem Theorem (Mapping Properties of Orthogonal Matrices) Assume $m \times m$ matrix U has orthonormal columns. Then 1. (Preserves length) $\|U\vec{x}\|$ = 2. (Preserves angles) $(U\vec{x})\cdot(U\vec{y})$ = 3. (Preserves orthogonality) Compute the length of the vector below. $\begin{bmatrix} 1/2 & 2/\sqrt{14} \\ 1/2 & 1/\sqrt{14} \\ 1/2 & -3/\sqrt{14} \\ 1/2 & 0 \end{bmatrix} \begin{bmatrix} \sqrt{2} \\ -3 \end{bmatrix}$ Additional Example (if time permits) A 4×4 orthonormal matrix is below. It's columns are orthonormal. $A = \begin{bmatrix} 1/2 & 2/\sqrt{10} & 1/2 & 1/\sqrt{10} \\ 1/2 & 1/\sqrt{10} & -1/2 & -2/\sqrt{10} \\ 1/2 & -1/\sqrt{10} & -1/2 & 2/\sqrt{10} \\ 1/2 & -2/\sqrt{10} & 1/2 & -1/\sqrt{10} \end{bmatrix}$ Verify that the rows also form an orthonormal basis. Example ## **6.2** EXERCISES In Exercises 1-6, determine which sets of vectors are orthogonal. $$\mathbf{1.} \begin{bmatrix} -1\\4\\-3 \end{bmatrix}, \begin{bmatrix} 5\\2\\1 \end{bmatrix}, \begin{bmatrix} 3\\-4\\-7 \end{bmatrix}$$ $$\mathbf{2.} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -5 \\ -2 \\ 1 \end{bmatrix}$$ 3. $$\begin{bmatrix} 2 \\ -7 \\ -1 \end{bmatrix}$$, $\begin{bmatrix} -6 \\ -3 \\ 9 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}$ 4. $\begin{bmatrix} 2 \\ -5 \\ -3 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 5. $$\begin{bmatrix} 3 \\ -2 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ 3 \\ -3 \\ 4 \end{bmatrix}, \begin{bmatrix} 3 \\ 8 \\ 7 \\ 0 \end{bmatrix}$$ **6.** $$\begin{bmatrix} 5 \\ -4 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} -4 \\ 1 \\ -3 \\ 8 \end{bmatrix}, \begin{bmatrix} 3 \\ 3 \\ 5 \\ -1 \end{bmatrix}$$ In Exercises 7–10, show that $\{\mathbf{u}_1, \mathbf{u}_2\}$ or $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthogonal basis for \mathbb{R}^2 or \mathbb{R}^3 , respectively. Then express \mathbf{x} as a linear combination of the \mathbf{u} 's. 7. $$\mathbf{u}_1 = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$, $\mathbf{u}_2 = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$, and $\mathbf{x} = \begin{bmatrix} 9 \\ -7 \end{bmatrix}$ 8. $$\mathbf{u}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$, $\mathbf{u}_2 = \begin{bmatrix} -2 \\ 6 \end{bmatrix}$, and $\mathbf{x} = \begin{bmatrix} -6 \\ 3 \end{bmatrix}$ 9. $$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} -1 \\ 4 \\ 1 \end{bmatrix}, \mathbf{u}_3 = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}, \text{ and } \mathbf{x} = \begin{bmatrix} 8 \\ -4 \\ -3 \end{bmatrix}$$ **10.** $$\mathbf{u}_1 = \begin{bmatrix} 3 \\ -3 \\ 0 \end{bmatrix}$$, $\mathbf{u}_2 = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix}$, and $\mathbf{x} = \begin{bmatrix} 5 \\ -3 \\ 1 \end{bmatrix}$ - 11. Compute the orthogonal projection of $\begin{bmatrix} 1 \\ 7 \end{bmatrix}$ onto the line through $\begin{bmatrix} -4 \\ 2 \end{bmatrix}$ and the origin. - **12.** Compute the orthogonal projection of $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ onto the line through $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$ and the origin. - 13. Let $\mathbf{y} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} 4 \\ -7 \end{bmatrix}$. Write \mathbf{y} as the sum of two orthogonal vectors, one in Span $\{\mathbf{u}\}$ and one orthogonal to \mathbf{u} . - **14.** Let $\mathbf{y} = \begin{bmatrix} 2 \\ 6 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} 7 \\ 1 \end{bmatrix}$. Write \mathbf{y} as the sum of a vector in Span $\{\mathbf{u}\}$ and a vector orthogonal to \mathbf{u} . - **15.** Let $\mathbf{y} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} 8 \\ 6 \end{bmatrix}$. Compute the distance from \mathbf{y} to the line through \mathbf{u} and the origin. - **16.** Let $\mathbf{y} = \begin{bmatrix} -3 \\ 9 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Compute the distance from \mathbf{y} to the line through \mathbf{u} and the origin. In Exercises 17–22, determine which sets of vectors are orthonormal. If a set is only orthogonal, normalize the vectors to produce an orthonormal set. 17. $$\begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix}$$, $\begin{bmatrix} -1/2 \\ 0 \\ 1/2 \end{bmatrix}$ **18.** $$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$$ $$19. \begin{bmatrix} -.6 \\ .8 \end{bmatrix}, \begin{bmatrix} .8 \\ .6 \end{bmatrix}$$ **20.** $$\begin{bmatrix} -2/3 \\ 1/3 \\ 2/3 \end{bmatrix}$$, $\begin{bmatrix} 1/3 \\ 2/3 \\ 0 \end{bmatrix}$ **21.** $$\begin{bmatrix} 1/\sqrt{10} \\ 3/\sqrt{20} \\ 3/\sqrt{20} \end{bmatrix}$$, $\begin{bmatrix} 3/\sqrt{10} \\ -1/\sqrt{20} \\ -1/\sqrt{20} \end{bmatrix}$, $\begin{bmatrix} 0 \\ -1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$ 22. $$\begin{bmatrix} 1/\sqrt{18} \\ 4/\sqrt{18} \\ 1/\sqrt{18} \end{bmatrix}, \begin{bmatrix} 1/\sqrt{2} \\ 0 \\ -1/\sqrt{2} \end{bmatrix}, \begin{bmatrix} -2/3 \\ 1/3 \\ -2/3 \end{bmatrix}$$ In Exercises 23 and 24, all vectors are in \mathbb{R}^n . Mark each statement True or False. Justify each answer. - b. If y is a linear combination of nonzero vectors from an orthogonal set, then the weights in the linear combination can be computed without row operations on a matrix. - c. If the vectors in an orthogonal set of nonzero vectors are normalized, then some of the new vectors may not be orthogonal. - d. A matrix with orthonormal columns is an orthogonal matrix. - e. If L is a line through $\mathbf{0}$ and if $\hat{\mathbf{y}}$ is the orthogonal projection of \mathbf{y} onto L, then $\|\hat{\mathbf{y}}\|$ gives the distance from \mathbf{y} to L. - **24.** a. Not every orthogonal set in \mathbb{R}^n is linearly independent. - b. If a set $S = \{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ has the property that $\mathbf{u}_i \cdot \mathbf{u}_j = 0$ whenever $i \neq j$, then S is an orthonormal set. - If the columns of an m × n matrix A are orthonormal, then the linear mapping x → Ax preserves lengths. - d. The orthogonal projection of **y** onto **v** is the same as the orthogonal projection of **y** onto c**v** whenever $c \neq 0$. - e. An orthogonal matrix is invertible. $^{^1}$ A better name might be $orthonormal\ matrix$, and this term is found in some statistics texts. However, $orthogonal\ matrix$ is the standard term in linear algebra. **24.** a. Not every orthogonal set in \mathbb{R}^n is linearly independent. - b. If a set $S = \{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ has the property that $\mathbf{u}_i \cdot \mathbf{u}_j = 0$ whenever $i \neq j$, then S is an orthonormal set. - c. If the columns of an $m \times n$ matrix A are orthonormal, then the linear mapping $\mathbf{x} \mapsto A\mathbf{x}$ preserves lengths. d. The orthogonal projection of y onto v is the same as the orthogonal projection of **y** onto c**v** whenever $c \neq 0$. - e. An orthogonal matrix is invertible. **25.** Prove Theorem 7. [Hint: For (a), compute $||U\mathbf{x}||^2$, or prove - **26.** Suppose W is a subspace of \mathbb{R}^n spanned by n nonzero orthogonal vectors. Explain why $W = \mathbb{R}^n$. - 27. Let U be a square matrix with orthonormal columns. Explain why U is invertible. (Mention the theorems you use.) **28.** Let U be an $n \times n$ orthogonal matrix. Show that the rows of - U form an orthonormal basis of \mathbb{R}^n . **29.** Let *U* and *V* be $n \times n$ orthogonal matrices. Explain why UV is an orthogonal matrix. [That is, explain why UV is - invertible and its inverse is $(UV)^T$.] **30.** Let U be an orthogonal matrix, and construct V by interchanging some of the columns of U. Explain why V is an orthogonal matrix. - 31. Show that the orthogonal projection of a vector y onto a line L through the origin in \mathbb{R}^2 does not depend on the choice of the nonzero **u** in L used in the formula for $\hat{\mathbf{y}}$. To do this, - formula (2) in this section. Replace \mathbf{u} in that formula by $c\mathbf{u}$, where c is an unspecified nonzero scalar. Show that the new formula gives the same \hat{y} . suppose y and u are given and \hat{y} has been computed by - 32. Let $\{v_1, v_2\}$ be an orthogonal set of nonzero vectors, and let c_1 , c_2 be any nonzero scalars. Show that $\{c_1\mathbf{v}_1, c_2\mathbf{v}_2\}$ is also an orthogonal set. Since orthogonality of a set is defined in terms of pairs of vectors, this shows that if the vectors in - an orthogonal set are normalized, the new set will still be orthogonal. 33. Given $\mathbf{u} \neq \mathbf{0}$ in \mathbb{R}^n , let $L = \operatorname{Span} \{\mathbf{u}\}$. Show that the mapping $\mathbf{x} \mapsto \operatorname{proj}_{t} \mathbf{x}$ is a linear transformation. - **34.** Given $\mathbf{u} \neq \mathbf{0}$ in \mathbb{R}^n , let $L = \operatorname{Span} \{\mathbf{u}\}$. For \mathbf{y} in \mathbb{R}^n , the **reflection of y in** L is the point refl_L **y** defined by $\operatorname{refl}_L \mathbf{y} = 2 \cdot \operatorname{proj}_L \mathbf{y} - \mathbf{y}$ See the figure, which shows that $refl_L y$ is the sum of $\hat{\mathbf{y}} = \text{proj}_L \mathbf{y}$ and $\hat{\mathbf{y}} - \mathbf{y}$. Show that the mapping $\mathbf{y} \mapsto \text{refl}_L \mathbf{y}$ The reflection of y in a line through the origin. 35. [M] Show that the columns of the matrix A are orthogonal by making an appropriate matrix calculation. State the calculation you use. $$A = \begin{bmatrix} -6 & -3 & 6 & 1 \\ -1 & 2 & 1 & -6 \\ 3 & 6 & 3 & -2 \\ 6 & -3 & 6 & -1 \\ 2 & -1 & 2 & 3 \\ -3 & 6 & 3 & 2 \\ -2 & -1 & 2 & -3 \\ 1 & 2 & 1 & 6 \end{bmatrix}$$ - **36.** [M] In parts (a)–(d), let U be the matrix formed by normalizing each column of the matrix A in Exercise 35. - a. Compute U^TU and UU^T . How do they differ? b. Generate a random vector \mathbf{y} in \mathbb{R}^8 , and compute - $\mathbf{p} = UU^T\mathbf{y}$ and $\mathbf{z} = \mathbf{y} \mathbf{p}$. Explain why \mathbf{p} is in Col A. Verify that z is orthogonal to p. - c. Verify that z is orthogonal to each column of U. - d. Notice that y = p + z, with p in Col A. Explain why z is in $(\operatorname{Col} A)^{\perp}$. (The significance of this decomposition of y will be explained in the next section.) # Section 6.3: Orthogonal Projections Chapter 6 : Orthogonality and Least Squares Math 1554 Linear Algebra Vectors \vec{e}_1 and \vec{e}_2 form an orthonormal basis for subspace W. Vector \vec{y} is not in W. The orthogonal projection of \vec{y} onto $W = \operatorname{Span}\{\vec{e}_1, \vec{e}_2\}$ is \hat{y} . #### Section 6.3: Orthogonal Projections Chapter 6 : Orthogonality and Least Squares Math 1554 Linear Algebra Vectors \vec{e}_1 and \vec{e}_2 form an orthonormal basis for subspace WVector \vec{y} is not in W. The orthogonal projection of \vec{y} onto $W = \operatorname{Span}\{\vec{e}_1, \vec{e}_2\}$ is \hat{y} . ### FIGURE 1 #### THEOREM 8 # The Orthogonal Decomposition Theorem Let W be a subspace of \mathbb{R}^n . Then each y in \mathbb{R}^n can be written uniquely in the form $y = \hat{y} + z$ (1) where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp} . In fact, if $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is any orthogonal basis of W, then $\hat{\mathbf{y}} = \frac{\mathbf{y} \boldsymbol{\cdot} \mathbf{u}_1}{\mathbf{u}_1 \boldsymbol{\cdot} \mathbf{u}_1} \mathbf{u}_1 + \dots + \frac{\mathbf{y} \boldsymbol{\cdot} \mathbf{u}_p}{\mathbf{u}_p \boldsymbol{\cdot} \mathbf{u}_p} \mathbf{u}_p$ (2) and $\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}$. $$\mathbf{y} = \begin{bmatrix} -1 \\ 4 \\ 3 \end{bmatrix}, \mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$ Let $\vec{u}_1,\dots,\vec{u}_5$ be an orthonormal basis for \mathbb{R}^5 . Let $W=\operatorname{Span}\{\vec{u}_1,\vec{u}_2\}$. For a vector $\vec{y}\in\mathbb{R}^5$, write $\vec{y}=\hat{y}+w^\perp$, where $\hat{y}\in W$ and $w^\perp\in W^\perp$. Orthogonal Decomposition Theorem Example 2a Let W be a subspace of \mathbb{R}^n . Then, each vector $\vec{y} \in \mathbb{R}^n$ has the unique decomposition $\vec{y} = \hat{y} + w^{\perp}, \quad \hat{y} \in W, \quad w^{\perp} \in W^{\perp}.$ And, if $\vec{u}_1,\dots,\vec{u}_p$ is any orthogonal basis for W, $\hat{y} = \frac{\vec{y} \cdot \vec{u}_1}{\vec{u}_1 \cdot \vec{u}_1} \vec{u}_1 + \dots + \frac{\vec{y} \cdot \vec{u}_p}{\vec{u}_p \cdot \vec{u}_p} \vec{u}_p.$ If time permits, we will prove this theorem on the next slide. $\vec{y} = \begin{pmatrix} -1 \\ 2 \\ 6 \end{pmatrix}, \quad \vec{u}_1 = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}, \quad \vec{u}_2 = \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix}$ Construct the decomposition $\vec{y}=\hat{y}+w^{\perp}$, where \hat{y} is the orthogonal projection of \vec{y} onto the subspace $W=\operatorname{Span}\{\vec{u}_1,\vec{u}_2\}$. We can write Then, $w^{\perp} = \vec{y} - \hat{y}$ is in W^{\perp} because Proof (if time permits) $\hat{y} =$ Uniqueness: # Best Approximation Theorem $\|\vec{y}-\hat{y}\|<\|\vec{y}-\vec{w}\|$ That is, \widehat{y} is the unique vector in W that is closest to $\overrightarrow{y}.$ # Proof (if time permits) The orthogonal projection of \vec{y} onto W is the closest point in W to \vec{y} . $$\vec{y} = \begin{pmatrix} -1 \\ 2 \\ 6 \end{pmatrix}, \quad \vec{u}_1 = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}, \quad \vec{u}_2 = \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix}$$ What is the distance between \vec{y} and subspace $W=\operatorname{Span}\{\vec{u}_1,\vec{u}_2\}$? Note that these vectors are the same vectors that we used in Example 2a. # Additional Example (if time permits) Indicate whether each statement is true or false. If true, explain why in one or two sentences. If false, give a counter example or explain why in one or two sentences. - a) If \vec{x} is orthogonal to \vec{v} and \vec{w} , then \vec{x} is also orthogonal to $\vec{v} \vec{w}$. - a) If x is orthogonal to v and w, then x is also orthogonal to v b) If $\operatorname{proj}_W \vec{y} = \vec{y}$, then $\vec{y} \in W$. c) If $\vec{y} = \vec{u}_1 + \vec{v}_1$, where $\vec{u}_1 \in W$ and $\vec{v}_1 \in W^\perp$, then \vec{u}_1 is the orthogonal projection of \vec{y} onto W. ### **6.3** EXERCISES In Exercises 1 and 2, you may assume that $\{u_1,\dots,u_4\}$ is an orthogonal basis for $\mathbb{R}^4.$ 1. $$\mathbf{u}_1 = \begin{bmatrix} 0 \\ 1 \\ -4 \\ -1 \end{bmatrix}$$, $\mathbf{u}_2 = \begin{bmatrix} 3 \\ 5 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ -4 \end{bmatrix}$, $\mathbf{u}_4 = \begin{bmatrix} 5 \\ -3 \\ -1 \\ 1 \end{bmatrix}$, $$\mathbf{x} = \begin{bmatrix} -1 \\ 10 \\ -8 \\ 2 \end{bmatrix}.$$ Write \mathbf{x} as the sum of two vectors, one in Span $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ and the other in Span $\{\mathbf{u}_4\}$ 2. $$\mathbf{u}_1 = \begin{bmatrix} 1\\2\\1\\1 \end{bmatrix}$$, $\mathbf{u}_2 = \begin{bmatrix} -2\\1\\-1\\1 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1\\1\\-2\\-1 \end{bmatrix}$, $\mathbf{u}_4 = \begin{bmatrix} -1\\1\\-2\\2 \end{bmatrix}$ Write v as the sum of two vectors, one in Span $\{\mathbf{u}_1\}$ and the other in Span $\{\mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$. In Exercises 3–6, verify that $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthogonal set, and then find the orthogonal projection of \mathbf{y} onto Span $\{\mathbf{u}_1, \mathbf{u}_2\}$. 3. $$\mathbf{y} = \begin{bmatrix} -1 \\ 4 \\ 3 \end{bmatrix}, \mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$ 4. $$\mathbf{y} = \begin{bmatrix} 6 \\ 3 \\ -2 \end{bmatrix}, \mathbf{u}_1 = \begin{bmatrix} 3 \\ 4 \\ 0 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} -4 \\ 3 \\ 0 \end{bmatrix}$$ 5. $$\mathbf{y} = \begin{bmatrix} -1 \\ 2 \\ 6 \end{bmatrix}, \mathbf{u}_1 = \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}$$ 5. $$\mathbf{y} = \begin{bmatrix} 6 \\ 4 \\ 1 \end{bmatrix}, \mathbf{u}_1 = \begin{bmatrix} -4 \\ -1 \\ 1 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$ In Exercises 7–10, let W be the subspace spanned by the \mathbf{u} 's, and write \mathbf{y} as the sum of a vector in W and a vector orthogonal to W. 7. $$\mathbf{y} = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}, \mathbf{u}_1 = \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 5 \\ 1 \\ 4 \end{bmatrix}$$ 8. $$\mathbf{y} = \begin{bmatrix} -1 \\ 4 \\ 3 \end{bmatrix}, \mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} -1 \\ 3 \\ -2 \end{bmatrix}$$ 9. $$\mathbf{y} = \begin{bmatrix} 4 \\ 3 \\ 3 \\ -1 \end{bmatrix}, \mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} -1 \\ 3 \\ 1 \\ -2 \end{bmatrix}, \mathbf{u}_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$ $$\mathbf{10.} \ \mathbf{y} = \begin{bmatrix} 3\\4\\5\\6 \end{bmatrix}, \mathbf{u}_1 = \begin{bmatrix} 1\\1\\0\\-1 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}, \mathbf{u}_3 = \begin{bmatrix} 0\\-1\\1\\-1 \end{bmatrix}$$ In Exercises 11 and 12, find the closest point to \mathbf{y} in the subspace W spanned by \mathbf{v}_1 and \mathbf{v}_2 . $$\mathbf{H.} \ \mathbf{y} = \begin{bmatrix} 3 \\ 1 \\ 5 \\ 1 \end{bmatrix}, \mathbf{v}_1 = \begin{bmatrix} 3 \\ 1 \\ -1 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}$$ 12. $$\mathbf{y} = \begin{bmatrix} 3 \\ -1 \\ 1 \\ 13 \end{bmatrix}, \mathbf{v}_1 = \begin{bmatrix} 1 \\ -2 \\ -1 \\ 2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -4 \\ 1 \\ 0 \\ 3 \end{bmatrix}$$ In Exercises 13 and 14, find the best approximation to **z** by vectors of the form c_1 **v**₁ + c_2 **v**₂. 13. $$\mathbf{z} = \begin{bmatrix} 3 \\ -7 \\ 2 \\ 3 \end{bmatrix}, \mathbf{v}_1 = \begin{bmatrix} 2 \\ -1 \\ -3 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ -1 \end{bmatrix}$$ 14. $$\mathbf{z} = \begin{bmatrix} 2\\4\\0\\-1 \end{bmatrix}, \mathbf{v}_1 = \begin{bmatrix} 2\\0\\-1\\-3 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 5\\-2\\4\\2 \end{bmatrix}$$ 15. Let $$\mathbf{y} = \begin{bmatrix} 5 \\ -9 \\ 5 \end{bmatrix}$$, $\mathbf{u}_1 = \begin{bmatrix} -3 \\ -5 \\ 1 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} -3 \\ 2 \\ 1 \end{bmatrix}$. Find the distance from \mathbf{y} to the plane in \mathbb{R}^3 spanned by \mathbf{u}_1 and \mathbf{u}_2 . 16. Let y, v₁, and v₂ be as in Exercise 12. Find the distance from y to the subspace of R⁴ spanned by v₁ and v₂. 17. Let $$\mathbf{y} = \begin{bmatrix} 4 \\ 8 \\ 1 \end{bmatrix}$$, $\mathbf{u}_1 = \begin{bmatrix} 2/3 \\ 1/3 \\ 2/3 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} -2/3 \\ 2/3 \\ 1/3 \end{bmatrix}$, and $W = \operatorname{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$. - $w = \operatorname{Span} \{\mathbf{u}_1, \mathbf{u}_2\}.$ a. Let $U = [\mathbf{u}_1 \ \mathbf{u}_2].$ Compute U^TU and UU^T . - a. Let $U = [\mathbf{u}_1 \ \mathbf{u}_2]$. Compute U^*U and UU^* . b. Compute $\operatorname{proj}_W \mathbf{y}$ and $(UU^T)\mathbf{y}$. **18.** Let $$\mathbf{y} = \begin{bmatrix} 7 \\ 9 \end{bmatrix}$$, $\mathbf{u}_1 = \begin{bmatrix} 1/\sqrt{10} \\ -3/\sqrt{10} \end{bmatrix}$, and $W = \operatorname{Span}{\{\mathbf{u}_1\}}$. - a. Let \bar{U} be the 2×1 matrix whose only column is \mathbf{u}_1 . Compute U^TU and UU^T . - b. Compute $\operatorname{proj}_{W} \mathbf{y}$ and $(UU^{T})\mathbf{y}$ 19. Let $$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$$, $\mathbf{u}_2 = \begin{bmatrix} 5 \\ -1 \\ 2 \end{bmatrix}$, and $\mathbf{u}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. Note that **20.** Let $$\mathbf{u}_1$$ and \mathbf{u}_2 be as in Exercise 19, and let $\mathbf{u}_4 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$. It can be shown that \mathbf{u}_4 is not in the subspace W spanned by \mathbf{u}_1 and \mathbf{u}_2 . Use this fact to construct a nonzero vector \mathbf{v} in \mathbb{R}^3 that is orthogonal to \mathbf{u}_1 and \mathbf{u}_2 . In Exercises 21 and 22, all vectors and subspaces are in \mathbb{R}^n . Mark each statement True or False. Justify each answer. - **21.** a. If **z** is orthogonal to \mathbf{u}_1 and to \mathbf{u}_2 and if $W = \operatorname{Span}\{\mathbf{u}_1,\mathbf{u}_2\}$, then **z** must be in W^{\perp} . - b. For each ${\bf y}$ and each subspace W , the vector ${\bf y} {\rm proj}_W \, {\bf y}$ is orthogonal to W . - c. The orthogonal projection $\hat{\mathbf{y}}$ of \mathbf{y} onto a subspace W can sometimes depend on the orthogonal basis for W used to compute $\hat{\mathbf{y}}$. - d. If y is in a subspace W, then the orthogonal projection of y onto W is y itself. - e. If the columns of an $n \times p$ matrix U are orthonormal, then $UU^T\mathbf{y}$ is the orthogonal projection of \mathbf{y} onto the column space of U. - **22.** a. If W is a subspace of \mathbb{R}^n and if v is in both W and W^{\perp} , then v must be the zero vector. - b. In the Orthogonal Decomposition Theorem, each term in formula (2) for ŷ is itself an orthogonal projection of y onto a subspace of W. - c. If $\mathbf{y} = \mathbf{z}_1 + \mathbf{z}_2$, where \mathbf{z}_1 is in a subspace W and \mathbf{z}_2 is in W^\perp , then \mathbf{z}_1 must be the orthogonal projection of \mathbf{y} onto W. - d. The best approximation to y by elements of a subspace W is given by the vector y proj_W y. - e. If an $n \times p$ matrix U has orthonormal columns, then $UU^T\mathbf{x} = \mathbf{x}$ for all \mathbf{x} in \mathbb{R}^n . - 23. Let A be an $m \times n$ matrix. Prove that every vector \mathbf{x} in \mathbb{R}^n can be written in the form $\mathbf{x} = \mathbf{p} + \mathbf{u}$, where \mathbf{p} is in Row A and \mathbf{u} is in Nul A. Also, show that if the equation $A\mathbf{x} = \mathbf{b}$ is consistent, then there is a unique \mathbf{p} in Row A such that $A\mathbf{p} = \mathbf{b}$. - **24.** Let W be a subspace of \mathbb{R}^n with an orthogonal basis $\{\mathbf{w}_1,\ldots,\mathbf{w}_p\}$, and let $\{\mathbf{v}_1,\ldots,\mathbf{v}_q\}$ be an orthogonal basis for W^{\perp} . - a. Explain why $\{\mathbf{w}_1,\ldots,\mathbf{w}_p,\mathbf{v}_1,\ldots,\mathbf{v}_q\}$ is an orthogonal set. - b. Explain why the set in part (a) spans \mathbb{R}^n . - b. Explain why the set in part (a) spans in c. Show that dim $W + \dim W^{\perp} = n$. - **25.** [M] Let U be the 8×4 matrix in Exercise 36 in Section 6.2. Find the closest point to $\mathbf{y} = (1,1,1,1,1,1,1,1)$ in Col U. Write the keystrokes or commands you use to solve this problem. - **26.** [M] Let U be the matrix in Exercise 25. Find the distance from $\mathbf{b} = (1, 1, 1, 1, -1, -1, -1, -1)$ to Col U.