


Example

Compute the least squares solution to A& = b, where

4 0 B 2
a=lo 2|, E=]o0
11 11
Solution:

7, _[4 01
a0

Theorem

Theorem (Unique Solutions for Least Squares)

Let A be any m x n matrix. These statements are equivalent.
b has a unique least-squares solution

1. The equation Ai
for each b € R™.

2. The columns of A are linearly independent

3. The matrix AT A is invertible.

And, if these statements hold, the least square solution is

7 = (AT A)~1ATS,

Useful heuristic: AT A plays the role of ‘length-squared" of the matrix A.
(See the sections on symmetric matrices and singular value

decomposition.)
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A”F become:

The normal equations AT AZ

Example
Compute the least squares solution to AZ = b, where
1 -6 —1
1 -2 » 2
A=l o b=
17 6

Hint: the columns of A are orthogonal.
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Theorem (Least Squares and QR)
I:et m X n matrix A have a Qquecomposition. Then for each
b € R™ the equation AZ = b has the unique least squares
solution

Rz = QTb.
(Remember, R is upper triangular, so the equation above is
solved by back-substitution.)

13
11
A711
13

w O v

Solution. The QR decomposition of A is

-1 1

1
245

A=QR=§1’1 - [023}
11 q| ooz
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THEOREM 15 Given an m x n matrix A with linearly independent columns, let A = OR be a
QR factorization of A as in Theorem 12. Then, for each b in R™, the equation

Ax = b has a unique least-squares solution, given by

=R'0™

1 1 1 1 g
Q=111 -1 -1 1 =1
111 -1 ] 4

And then we solve by backwards substitution R# = QT%

IR
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6.5 EXERCISES

In Exercises 14, find a least-squares solution of Ax =b by
(a) constructing the normal equations for & and (b) solving for X.

-1 2 4
LA=| 2 =3[b=]1
-1 3 2
2
2.4=|-2
2
1
-1
3.A=
0 3 4 1 E
2 B.Lleed=|-2 1|,b=|-9 ,u=[_1].mdv=
34 5
4 A=

)

In Exercises 5 and 6, describe all least-squares solutions of the
equation Ax = b.

[72] Compute Au and Av, and compare them with b.

Could u possibly be a least-squares solution of Ax = b?
(Answer this without computing a least-squares solution.)

21 5 2
11 0 1 M. Let A=|-3 —4 |, b=|4 ,n:[_s],andv:
11 0 3 3 2 4
sA=lh o 1|8
1 0 1 2 5 ] Compute Au and Av, and compare them with b. Is
it possible that at least one of u or v could be a least-squares
1 o 7 solution of Ax = b? (Answer this without computing a least-
: : 8 : squares solution.)
6 A=1, o [P=lg In Exercises 15 and 16, use the factorization A = QR to find the
1 0 1 5 least-squares solution of Ax = b.
1 0 1 4
2 3 2/3 1305 7
7. Compute the least-squares error associated with the least- 15+ A=|2 4 =12/3 2/3 [0 1 ]vh =3
squares solution found in Exercise 3. Lo 13 -2/3 1
8. Compute the least-squares error associated with the least- § - I L -
squares solution found in Exercise 4. 16. A= ' o [P 172 b % . b= >
SIS Ee TSRS S S| i 12 12 |lo 5|P=| s
In Exercises 9-12, find (a) the orthogonal projection of b onto o4 1/2 172 7

Col A and (b) a least-squares solution of Ax = b InExercises 17 and 18, A is anm x n matrix and b is in R”. Mark

each statement True or False. Justify each answer.

17. a. The general least-squares problem is to find an x that
makes Ax as close as possible to b.
b. A least-squares solution of AXx =b is a vector X that  24. Find aformula for the least-squares solution of Ax = b when
satisfies A% = b, where b is the orthogonal projection of the columns of A are orthonormal.
b onto Col 4. 25. Describe all least-squares solutions of the system
c. Aleast-squares solution of Ax = b is a vector & such that
Ib— Ax] < [|b— A% for all x in R x+y=2
d. Any solution of A7Ax = A”b is a least-squares solution x+y=4
of Ax=b. 26. [M] Example 3 in Section 4.8 displayed a low-pass linear
e. If the columns of A are linearly independent, then the ﬁller that changed a signal {y;} into {yz+,} and changed a
equation Ax = b has exactly one least-squares solution. hi q signal {ws} into the zero signal, where
18. a. If b is in the column space of A, then every solution of Yk = cos(wk/4) and wy = cos(3xk/4). The following cal-
Ax = b is a least-aquares solutice. culations will design a filter with approximately those prop-
rties. The filte 1
b. The least-squares solution of Ax = b is the point in the estics;The fliex cquation 1§

column space of A closest to b.

@oYi42 + @1 Yi41 + A2)k k for all k (8)

o

. A least-squares solution of Ax = b is a list of weights
that, when applied to the columns of A, produces the
orthogonal projection of b onto Col A.

Because the signals are periodic, with period 8, it suffices
to study equation (8) for k = 0,....7. The action on the
two signals described above translates into two sets of eight

d. If % is a least-squares solution of Ax=b, then
&= (A7)~ A7b.

equations, shown below:

: N " Ye+2  Yi+1 Yk Vi+1
e. The normal equations always provide a reliable method p 5 1 ‘4
for computing least-squares solutions. 5 o N g4
f. If A has a QR factorization, say A = QR. then the best 21o-1 o _7
way to find the least-squares solution of Ax = b is to 7 21 —ql[e 21
compute & = R~ Q7b. o —1 all=l=12
19. Let Abeanm x n matrix. Use the steps below to show that a ) 0o -7|L® 0
vector x in R" satisfies Ax = 0 if and only if A74x = 0. This 1 a 0 7
will show that Nul A = Nul A7A. k=71 21 17 L 1t
a. Show that if Ax = 0, then A’Ax = 0. e i
b. Suppose A74x = 0. Explain why x’A74x = 0, and use = 5. -
this to show that Ax = 0. 9 = : 9
is to show that Ax = 0. i 5 g s
20. Let A be an m x n matrix such that A4 is invertible. Show : -1 a 0 0
that the columns of A are linearly independent. [Carefil: 3 -1 a||l*® 0
You may not assume that A is invertible; it may not even be 0 7 =all|2]= e
square.] -7 o 7|L® 0
21. Let A be an m x n matrix whose columns are linearly inde- L 0 0
pendent. [Careful: A need not be square.] k=T7"1-7 1 -7/ LO

a. Use Exercise 19 to show that A74 is an invertible matrix.
Write an equation Ax = b, where Aisa 16 x 3 matrix formed

from the two coefficient matrices above and where b in R' is
formed from the two right sides of the cquations. Find ag, 1.
and a; given by the least-squares solution of Ax = b. (The

7in the data above was used as an approxnmanon for f 2/2,
to illustrate how a typical computation in an applied problem
might proceed. If .707 were used instead, the resulting filter
coefficients would agree to at least seven decimal places
with /2/4,1/2, and v/2/4, the values produced by exact
arithmetic calculations.)

b. Explain why A must have at least as many rows as
columns.

c. Determine the rank of A.

22. Use Exercise 19 to show that rank A”4 = rank A. [Hint: How
many columns does A7A have? How is this connected with
the rank of A74?]

23. Suppose A is m x n with linearly independent columns and
b is in R™. Use the normal equations to produce a formula
for b, the projection of b onto Col A. [Hint: Find X first. The
formula does not require an orthogonal basis for Col A.]




Chapter 6 : Orthogonality and Least Squares
6.6 : Applications to Linear Models
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Topics and Objectives

Topics
1. Least Squares Lines
2. Linear and more complicated models

Learning Objectives
For the topics covered in this section, students are expected to be able to
do the following.
1. Apply least-squares and multiple regression to construct a linear
model from a set of data points.
2. Apply least-sq to fit poly ials and other curves to data.

Motivating Question
Compute the equation of the line y = fy + Bz that best fits the data

z|2 5 7 8
y|1l 1 4 3
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The Least Squares Line

Graph below gives an approximate linear relationship between x and y.

1. Black circles are data.
2. Blue line is the least squares line.
3. Lengths of red lines are the .
The least squares line minimizes the sum of squares of the

Topics and Objectives

Topics
1. Least Squares Lines
2. Linear and more complicated models

Learning Objectives
For the topics covered in this section, students are expected to be able to
do the following.
1. Apply least-squares and multiple regression to construct a linear
model from a set of data points.
2. Apply least-squares to fit polynomials and other curves to data.

Motivating Question
Compute the equation of the line y = 8y + f1z that best fits the data

z|2 5 7 8
y[1 1 4 3
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Course Schedule

Week Dates

1

o21-8/25

o28-9/1

9a-9/8

911-915

9n18-9/22

9259129

1072- 1076

1079 - 10113

1016 - 10/20

10723 - 10127

10120 - 1173

1076 - 11710

113 - 1317

11720 - 11724

17271211

12/4- 1278

1211 - 12115

Mon
Lecture

2324

Bk

sa

6162

7374

74

Lastecture

Toe
Studo
wst1
wstate
wst.7
wsi9.21
ws2223
ws2829
ws3349
Break
wss3
wse1
Wssa64
w6566
WsPageRank
ws7273
ws7374

Last Stucio

Bxam 1, Review

25

312

5152

Bxam2, Review

6445

Exam3, Review

72

Break

74

Reading Period

Th
Studo
wst2
w5
w18
Canceled
w2425
w3132
wss152
Cancelled

wss.s

Wss465
Canceled
w7172
Break

ws7.4

through course

Fi
Lecture

Final Exams: MATH 1554 Common Final Exam Tuesday, December 12th at 6pm

Example 1 Compute the least squares line y = o + 1z that best fits

the data
T
v
We want to solve

1 2
15
17
1 8

This is a least-squares problem : X

T
Secton 66 Siide 45 Secton 66 Siide 45
The normal equations are Least Squares Fitting for Other Curves
1
e [, 111 ] 1| We can consider least squares fitting for the form
1
i y =5+ Fhi(@) +Bifalw) + o+ Bufila)
where the functions f; are known. Should have only a few functions!
o 1111 e Keep in mind this is a linear problem in the  variables.
X7 = 5o

So the least-squares solution is given by

ERAIEH

w & =



W ancat
Gaeatls 225 a5 5820

R

H

:

:

:

o 4
ey 1
fmi .
: :

:

~exponential yeaipnatasbetatexp )
) @) | RO) PG T RO SPEEO) 5 X(5) eI

£ ) aipna. xemacs cexp ()
rrerapter A (Arenatob)

fploten, (0 81

]

ciqurecs)
fplotics, (0 o)

ciqurace)
fplotze, (0 81)

plot iy marterataet 2

m/class/lldv6iezpgh7jy/post/

Fle_Edi_View lasert_Tools_Deskop_Window_Help
) (1]

ooe Faun
Fle Gt View sert Toos Deskon Window el
DéWé a 0B kE

eoo
o[ Fle Edt view msen Tools Ouskiop Wdow Help
Dode o 08 s E

Fle Gt View tsent Toos Deskon Window Helo

Dode @ 08 kDT

/

Vindon_tip

Gusalm

e
o[l € view e Tools Deskiop Widow tlp
] a B

A=
1
2 1
a1
51
8 1
xhat =

errorLine =
o 3.5024
Y rot Famz eoo rous
Fle €t View msen Toos Deskap Window Help Fle_ Tt ew oen_Toos_Ovskiop Wadow_tels =[Fie_Ed View mset_Toos_Deskop_ Widow el -
DEE@s 3 08 v EEFDICRER Y. Nede o 0D E
sE0a
d A
J b P
, g 2 4
PR
L R e s 2
8 6
o) Toms .
“ Fie cn vew isen Toos Deskon wndow Help ~ Fie_Edt View isen_Toos Deskop Vindow Hp -
T T NI Dswsanm -
- " . 1.3882
0.13705
! / errorquad =
“ w P « 2.4685

FleEdt View losent_Toos_Oeskiop_Window el

DdWe @ 08

Fle Edt Vew Wsen Toos Oeskop Window Help
Dude 0B &E

Fle Gt View Wsent Took Deskop Wndow el
BEFTN-R TR

e
vea

oo Faune L
* Fle Edi_View Insert_Tools Duskop Widow Help s eeinm
Er T ]



Least Squares Fitting for Other Curves

RECENT MONTHLY MEAN CO, AT MAUNA LOA

- & WolframAlpha

H

§ o

§ Mathematica
C i

Black line is yearly CO, levels, and the monthly is the red line. To
capture seasonality, would need a curve

daily CO; = o + Bt + S sin(2m ) + 85 cos(2m )
Above, ¢ s time, measured in months.

Average cost
per unit

x
| Units produced

FIGURE 3

Average cost curve.

Theorem

Theorem (Unique Solutions for Least Squares)

Let A be any m x n matrix. These statements are equivalent.
1. The equation AZ = b has a unique least-squares solution
for each b € R™.
2. The columns of A are linearly independent.
3. The matrix AT A is invertible.
And, if these statements hold, the least square solution is

7= (ATA)~1ATb.

Useful heuristic: AT A plays the role of ‘length-squared’ of the matrix A.
(See the sections on symmetric matrices and singular value
decomposition.)

ection 6.5 Slide 337

LeastSquares|{{z:, 51,11}, {22, 72,1},

WolframAlpha and Mathematica Syntax

Least squares problems can be computed with WolframAlpha,
Mathematica, and many other software.

Linear £it {1, y1} {22, 02} oo {s i }}

RN

Almost any spreadsheet program does this as a function as well

Zs
g2
E-é
34
x
Surface area
of foliage
FIGURE 4 FIGURES

e ) Data points along a cubic curve.
Production of nutrients.

Theorem (Least Squares and QR)

Let m x n matrix A have a QR decomposition. Then for each
b € R™ the equation AZ = b has the unique least squares
solution

Rt = QTb.
(Remember, R is upper triangular, so the equation above is
solved by back-substitution.)




6.6 EXERCISES

In Exercises 1-4, find the equation y = B, + B,x of the least-
squares line that best fits the given data points.

1. (0,1),(1,1),(2.2).(3,2)

(1.0),(2,1),(4,2),(5.3)

(=1,0),(0,1),(1,2),(2.4)

(2,3),(3,2),(5.1),(6.0)

Let X be the design matrix used to find the least-squares line
to fitdata (x;, yy). ..., (X4, yn). Use a theorem in Section 6.5
to show that the normal equations have a unique solution
if and only if the data include at least two data points with
different x-coordinates.

Let X be the design matrix in Example 2 corresponding to
a least-squares fit of a parabola to data (x;. yy)..... i V8);
Suppose x, x5, and x; are distinct. Explain why there is only
one parabola that fits the data best, in a least-squares sense.
(See Exercise 5.)

A certain experiment produces the data (1,1.8), (2,2.7),
(3.3.4), (4,3.8),(5.3.9). Describe the model that produces
a least-squares fit of these points by a function of the form

y = Bix + fax?

Such a function might arise, for example, as the revenue from
the sale of x units of a product, when the amount offered for
sale affects the price to be set for the product.

a. Give the design matrix, the observation vector, and the
unknown parameter vector.

11

b. [M] Find the associated least-squares curve for the data.

A simple curve that often makes a good model for the vari-

able costs of a company, as a function of the sales level x,

has the form y = Byx + Box? + Bax*. There is no constant

term because fixed costs are not included.

a. Give the design matrix and the parameter vector for the
linear model that leads to a least-squares fit of the equa-
tion above, with data (x;, y)..... (XnsYn)-

. [M] Find the least-squares curve of the form above to fit
the data (4, 1.58), (6,2.08), (8,2.5), (10, 2.8), (12,3.1),
(14,3.4), (16,3.8), and (18, 4.32), with values in thou-
sands. If possible, produce a graph that shows the data
points and the graph of the cubic approximation.

o

9. A certain experiment produces the data (1,7.9), (2, 5.4), and
(3. —.9). Describe the model that produces a least-squares fit
of these points by a function of the form

y = Acosx + Bsinx

Suppose radioactive substances A and B have decay con-
stants of .02 and .07, respectively. If a mixture of these two
substances at time ¢ = 0 contains M, grams of A and Mg
grams of B, then a model for the total amount y of the mixture
present at time 7 is

Mae=% 4 Mge—0" (6)

Suppose the initial amounts M, and Mg are unknown,
but a scientist is able to measure the total amounts
present at several times and records the following points
(t;. yi): (10,21.34), (11,20.68), (12,20.05), (14,18.87),
and (15, 18.30).

a. Describe a linear model that can be used to estimate M

and Mg.

b. [M] Find the le:

squares curve based on (6).

Halley’s Comet last appeared in 1986 and will reappear in
2061.

[M] According to Kepler’s first law, a comet should have
an elliptic, parabolic, or hyperbolic orbit (with gravitational
attractions from the planets ignored). In suitable polar coor-
dinates, the position (r, ) of a comet satisfies an equation of
the form

r=p+e(r-cos?)

where B is a constant and e is the eccentricity of the orbit,
with0 < e < 1 foranellipse,e = 1 foraparabola,and e > 1
for a hyperbola. Suppose observations of a newly discovered
comet provide the data below. Determine the type of orbit,
and predict where the comet will be when # = 4.6 (radians).?

9| 88 110
r|300 230

142
1.65

1.77
125

2.14
101

[M] A healthy child’s systolic blood pressure p (in millime-
ters of mercury) and weight w (in pounds) are approximately
related by the equation

Bo+Bilnw=p

Use the following experimental data to estimate the systolic
blood pressure of a healthy child weighing 100 pounds.

3 The basic idea of least-squares fitting of data is due to K. F. Gauss
(and, independently, to A. Legendre), whose initial rise to fame occurred
in 1801 when he used the method to determine the path of the asteroid
Ceres. Forty days after the asteroid was discovered, it disappeared behind
the sun. Gauss predicted it would appear ten months later and gave its
location. The accuracy of the predicti ished the European scientific
community.




w 44 61 81 113 131
Inw | 378 411 439 473 488
P 91 98 103 110 112

13. [M] To measure the takeoff performance of an airplane, the
horizontal position of the plane was measured every second,
from 1 = 0 to ¢ = 12. The positions (in feet) were: 0, 8.8,
299, 620,104.7, 159.1, 222.0, 294.5, 380.4, 471.1, 571.7,
686.8, and 809.2.

a. Find the least-squares cubic curve y = f,+ fit +
Bat? + Bst? for these data.

b. Use the result of part (a) to estimate the velocity of the
plane when 7 = 4.5 seconds.

1 1
14. LetX = ;(J. +--+x,)andy = ;(y. + -+ + y,).Show
that the least-squares line for the data (x,, yy),.... (Xns ¥n)
must pass through (¥, ¥). That is, show that ¥ and ¥ satisfy

the linear equation ¥ = fjo + 517. [Hint: Derive this equa-
tion from the vector equation y = X 8 + €. Denote the first
column of X by 1. Use the fact that the residual vector € is
orthogonal to the column space of X and hence is orthogonal
to1.]

Given data for a least-squares problem, (xy. y1)..... (X,, y,), the

following abbreviations are helpful:

Tx=Yx Ta=Yiox

Ty=Xim¥n LXV=Xim X

The normal equations for a least-squares line y = 30 - ﬁlx may

be written in the form
npo+hXx=3y

BoXx+pXx=Yxy

15. Derive the normal equations (7) from the matrix form given
in this section.

(W)

16. Use a matrix inverse to solve (h; system of eq| in (7)

6.6 Applications to Linear Models 377

. Rewrite the data in Example 1 with new x-coordinates
in mean deviation form. Let X be the associated design
matrix. Why are the columns of X orthogonal?

b. Write the normal equations for the data in part (a), and

solve them to find the least-squares line, y = B, + fix*,

where x* = x —5.5.

18. Suppose the x-coordinates of the data (x,, y,)..... (X, Yn)
are in mean deviation form, so that }_ x; = 0. Show that if
X is the design matrix for the least-squares line in this case,
then XX is a diagonal matrix.

Exercises 19 and 20 involve a design matrix X with two or more
columns and a least-squares solution 8 of y = X 8. Consider the
following numbers.

(i) [IXB|>—the sum of the squares of the “regression term.”
Denote this number by SS(R).

@) [ly— Xﬁ"z—lhe sum of the squares for error term. Denote

this number by SS(E).
(iii) [|y|>—the “total” sum of the squares of the y-values. Denote
this number by SS(T).
Every text that di: and the linear model
y=XB+e€i these though termi and

notation vary somewhat. To simplify matters, assume that the
mean of the y-values is zero. In this case, SS(T) is proportional to
what is called the variance of the set of y-values.

19. Justify the equation SS(T) = SS(R) + SS(E). [Hint: Use a
theorem, and explain why the hypotheses of the theorem are
satisfied.] This equation is extremely important in statistics,
both in regression theory and in the analysis of variance.

20. Show that [ XB|* = A7 X7y. [Hint: Rewrite the left side
and use the fact that B satisfies the normal equations.] This
formula for SS(R) is used in statistics. From this and from

and thereby obtain formulas for o and B. that appear in many
statistics texts.

E ise 19, obtain the standard formula for SS(E):
SSE) =y'y-B X7y



Midterm 3 Lecture Review Activity, Math 1554

1. Indicate true if the statement is true, otherwise, indicate false.

true  false
a) If S is a two-dimensional subspace of R, then the dimension of O O
S+ is 48.
b) An eigenspace is a subspace spanned by a single eigenvector. O
¢) The n X n zero matrix can be diagonalized. O

d) A least-squares line that best fits the data points O O)
(0,31), (1, 32), (2,ys) is unique for any values y1, ya, ys.

2. If possible, give an example of the following.

2.1) A matrix, A, that is in echelon form, and dim ((RowA)*) = 2, dim ((Col 4)*) =1

2.2) A singular 2 x 2 matrix whose ei ding to ei lue A = 2 is the line
1y = 2z,. The other eigenspace of the matrix is the z, axis.

2.3) A subspace S, of R?, that satisfies dim(S) = dim(S*) = 3.

2
2.4) A 2 x 3 matrix, A, that is in RREF. (Row A)* is spanned by ( ) "
1



3. Circle possible if the set of conditions are create a situation that is possible, otherwise, circle
impossible. For the situations that are possible give an example.

3.1) Aisn xn, AT = Ay for a particular Z # §, & and ¥ are in R", and dim((Row A)*) # 0.

possible impossible

3.2) Aisn xn, A € Ris an eigenvalue of A, and dim((Col(A — M ))*) = 0.

possible impossible

3.3) projgii = proj;v, ¥ # i, and i # 0, 7 # 0.

possible impossible

4. Consider the matrix A.

1 -30 2
A=|0 0 1 -3
00 0 0
Construct a basis for the following subspaces and state the dimension of each space.
4.1) (RowA)*

42) ColA

43) (ColA)*



Topics and Objectives

Topics
1. Review of Markov chains
. Theorem describing the steady state of a Markov chain

2
3. Applying Markov chains to model website usage.
10.2 : The Steady-State Vector and Page Rank 4. Calculating the PageRank of a web

— @ @ Learning Objectives
l \ / 1. Determine whether a stochastic matrix is regular.
2. Apply matrix powers and theorems to characterize the long-term
@ - behaviour of a Markov chain.
O e 3. Construct a transition matrix, a Markov Chain, and a Google Matrix
]l \ for a given web, and compute the PageRank of the web.
(1)—(s)
Section 102 Side 258 Section 102 Stde 259

Trajectory : 1
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Chapter 10 : Finite-State Markov Chains

10.2 : The Steady-State Vector and Page Rank

Google

Where is Chapter 10?

« The material for this part of the course is covered in Section 10.2

« Chapter 10 is not included in the print version of the book, but it is
in the on-line version.

« If you read 10.2, and | recommend that you do, you will find that it
requires an understanding of 10.1.

* You are not required to understand the material in 10.1.

Other sources that you may find helpful are listed below.
1. PageRank Algorithm (Math Explorer’s Club, Cornell Univ.)
bttp: //wwe.math. cornell. edu/~aec/Winter2009/
RalucaRemus/Lecture3/lecture3. htnl
Austin, D. How Google Finds Your Needle in the Web's Haystack
Available at: http:
11

2

3. Bryan, K., Leise, T. The $25,000,000,000 Eigenvector The Linear
Algebra behind Google. SIAM Review, 48(3). Available at
Bttp://userpages unbe. edu/-kogan/teaching/nd30/
GooglePageRank . pdf

Long Term Behaviour

Can use the transition matrix. P to find the distibution of cars after 1

The disribution of cars after 2 weeks is

EREN
“The disribution of cars after n wesks is:

Topics and Objectives

Topics
1. Review of Markov chains
2. Theorem describing the steady state of a Markov chain
3. Applying Markov chains to model website usage.
4. Calculating the PageRank of a web

Learning Objectives
1. Determine whether a stochastic matrix is regular.
Apply matrix powers and theorems to characterize the long-term
behaviour of a Markov chain.
3. Construct a transition matrix, a Markov Chain, and a Google Matrix
for a given web, and compute the PageRank of the web.

Steady State Vectors

Recall the car rental problem from our Section 4.9 lecture.

A car rental company has 3 rental locations, A, B, and C.
rented from
A

A8 1 2
remedto B 2 6 3
c o 35

There are 10 cars at each location today, what happens to the distri-
bution of cars after a long time?

Long Term Behaviour

To investigate the lonterm behaviour of a system that has a regular
transition matrix I, we coul

1. compute 1 for large 1.
2. compute the steady.-state vector, 7, by soling 7= 4.
To salve PageRank problems, we will rly on the first approach.

Course Schedule

Cancellations

weather wil kel re

Week Dates
1 e
2 wm-on

3 oa-orm

4 omi-ons
s e~z

6 ws-9

7 102-10
8 105-1013
5 1016-10/20
10 10/23- 1027
n 10m-1s
12 1we-10
[ ERpe V)
1 1201024
15 w2-1n
16 12741278

v 12m-12s

Break

6162

7374

Lastlecture

Toe

Studio

wsi1

ws1314

ws17

Ws1921

ws2223

ws2829

ws3349

Break

wss1

wss364

Wss566

WsPageRank

ws7273

ws7.374

Last Stucio

Exam 1, Review

25

3132

5152

Exam 2, Review

62

a5

Exam 3, Review

72

Break

74

Reaing Period

The Fri
studio Lecture
wst2 13
wsts 17
wsts 19
Cancelled 22
Ws2425 28
ws3132 a3
w5152 52
Cancelled 53
wsss 61
wse2 63

Wse 465 65
Cancelled PageRank
ws7.172 73
Break Break
ws7.4 74

December 12th at 6pm

erpace.



Theorem 1

If P is a regular m x m transition matrix with m > 2, then the following
statements are all true.

1. There is a stochastic matrix II such that

Example 1

Suppose we have 4 web pages that link to each other according to this
diagram.

2. Each column of IT is the same probability vector 7.

lim P" =11

n—oo

3. For any initial probability vector &,

4. P has a unique eigenvector, g, which has eigenvalue A = 1.

lim P"& =§
=

5. The eigenvalues of P satisfy || < 1.

We will apply this theorem when solving PageRank problems.
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clc
format bank

%% rental car - long term analysis
.3 ;0 .3 .5]

A=[.8 .1 .2 ;
k=10
Ak

.2 .6

%% google PageRank

PO=[0 1/2 1/2 0 1/5 ;
1/2 0 1/2 1/2 1/5 ;
0 1/20 0 1/5;
1/2 0 0 0 1/5 ;
0 0 0 1/2 1/5 1;
KO=(1/5)*[1 1 1 1 1 ;
11111 ;
1111 1;
11111 ;
1111 1];
G0=.85%P0+.15%K0;
P1=[0 0 1 0 1/5
1/3 0 0 1/2 1/5 ;
1/3 0 0 1/2 1/5 ;
1/3 1/2 0 0 1/5 ;
01/2 00 1/5];
G1=.85*P1+.15*K0;
P2=[0 1/2 0 1/70 0 1/7 ;
00 1/3 1/7 1/2 0 1/7 ;
10 0 1/7 0 1/3 1/7 ;
00 1/3 1/7 0 0 1/7 ;
01/2 0 1/7 0 0 1/7 ;
00 1/3 1/7 1/2 1/3 1/7;
00 0 1/7 0 1/3 1/71;
K2=1/7*%[1 11111 1;
1111111;
1111111;
1111111;
1111111;
1111111;
1111111]1;
G2=.85*P2+.15*K2;

k=20;

test=[1 111111 ] *G2;

format short
for i=1:k

i;

Gl i;
end

Page 1 has links to pages

Page 2 has links to pages

®

If a user on a page in this web is equally likely to go to any of the pages
that their page links to, construct a Markov chain that represents how

users navigate this web.
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Transition Matrix, Importance, and PageRank

 The square matrix we constructed in the previous example is a
transition matrix. It describes how users transition between pages
in the web

 The steady-state vector, {. for the Markov-chain, can characterize
the long-term behavior of users in a given web.

« I is unique, the importance of a page in a web is given by its
corresponding entry in 4.

 The PageRank is the ranking assigned to each page based on its
importance. The highest ranked page has PageRank 1, the second
PageRank 2, and 5o on

Is the transition matrix in Example 1 a regular matrix?

Adjustment 2

A user at any page will navigate any page among those that
their page links to with equal probability p, and to any page
in the web with equal probability 1 — p. The transition matrix
becomes

G=pP.+(1-pK

Al the elements of the n x n matrix K are equal to 1/n.

pis referred to as the damping factor, Google is said to use p = 0.85.

With adjustments 1and 2, our the Google matrix is:

Adjustment 1

Adjustment 1

If a user reaches a page that doesn't link to other pages, then
the user will choose any page in the web, with equal probabiliy,
and move to that page.

Let's denote this modified transition matrix as P. Our transition matrix
in Example 1 becomes:

Computing Page Rank

« Because @ s stochastic, for any initial probability vector &,

Fo=1

lim G
« In practice we can compute the page rank for each page in the web
by evaluating:
gy
for large m. The elements of the resulting vector give the page ranks
of each page in the el
On a MATH 1554 exam,
« problems that require a calculator will not be on your exam

 you may construct your G matrix using factions instead of decimal
expansions



Example 2 (if time permits)

Construct the Google Matrix for the web below (your instructor would
provide the web).

The PageRank Algorithm
currently used by Google
is under constant
development, and tailored
to individual users

Swcion 102 St 7m0 Swcion 102 St 71

1
3
2 < —ed

Y Y
A

<16
Y

7

FIGURE 1
A seven-page Web.

There is (of course) Much More to PageRank

When PageRank was devised, in 1996,
Yahoo! used humans to provide a "index
for the Internet, " which was 10 million
pages.

The PageRank algorithm was produced as
a competing method. The patent was
awarded to Stanford University, and
exclusively licensed to the newly formed
Google corporation.

Brin and Page combined the PageRank
algorithm with a webcrawler to provide
regular updates to the transition matrix for
the web.

The explosive growth of the web soon
overwhelmed human based approaches to
searching the internet

DEFINITION A stochastic matrix P is regular if some power P¥ contains only strictly positive
entries.
THEOREM 1 If P is a regular m x m transition matrix with m > 2, then the following state-

ments are all true.
a. There is a stochastic matrix IT such that lim P" = TI.
n—>o00

b. Each column of IT is the same probability vector q.
c. For any initial probability veclorxn."EIgQ Pixo=gq-
d

. The vector q is the unique probability vector which is an eigenvector of P

associated with the eigenvalue 1.
e. All eigenvalues A of P other than 1 have |[A| < 1.



10.2 Exercises

In Exercises 1 and 2, consider a Markov chain on {1, 2} with the
given transition matrix P. In each exercise, use two methods to
find the probability that, in the long run, the chain is in state 1.
First, raise P to a high power. Then directly compute the steady-

state vector.
[2 4 T4 273
- P‘[.s .6] = P‘[3/4 |/3]

In Exercises 3 and 4, consider a Markov chain on {1, 2, 3} with
the given transition matrix P. In each exercise, use two methods
to find the probability that, in the long run, the chain is in state 1.

In Exercises 7 and 8, determine whether the given matrix is
regular. Explain your answer.

First, raise P to a high power. Then directly compute the steady-
state vector.

13 14 0 1 2 3
.P=|1/3 12 1 4. P=|2 3 4
13 1/4 0 W w5 3

In Exercises 5 and 6, find the matrix to which P" converges as n
increases.
1/4  3/5 0
5. P=|:;?: %g] 6. P=|1/4 0 1/3
1/2. 2/5 2/3

In Exercises 15 and 16, consider a simple random walk on the
given directed graph. In the long run, what fraction of the time

will the walk be at each of the various states?

13 0 12
7.P=|1/3 12 12 15. 1

2 16. 1 4

13 12 0

12 0 1/3 0
0 2/5 0 37
0

8. P=\ 23 0

0 3/5 0 4/7
9. Consider a pair of Ehrenfest urns with a total of 4 molecules
divided between them.

a. Find the transition matrix for the Markov chain that mod-
els the number of molecules in urn A, and show that this

17. Consider the mouse in the following maze from Section 10.1,
Exercise 17.

matrix is not regular.

o

. Assuming that the steady-state vector may be interpreted
as occupation times for this Markov chain, in what state
will this chain spend the most steps?

10. Consider a pair of Ehrenfest urns with a total of 5 molecules
divided between them.

1A2
_<3>__

\I( s

a. Find the transition matrix for the Markov chain that mod-
els the number of molecules in urn A, and show that this
matrix is not regular.

b. Assuming that the steady-state vector may be interpreted
as occupation times for this Markov chain, in what state
will this chain spend the most steps?

11. Consider an unbiased random walk with reflecting bound-

aries on {1,2,3,4}.
a. Find the transition matrix for the Markov chain and show
that this matrix is not regular.

b. Assuming that the steady-state vector may be interp

The mouse must move into a different room at each time step
and is equally likely to leave the room through any of the
available doorways. If you go away from the maze for a while,
what is the probability that the mouse will be in room 3 when
you return?

18. Consider the mouse in the following maze from Section 10.1,
Exercise 18.

as occupation times for this Markov chain, in what state
will this chain spend the most steps?

What fraction of the time does it spend in room 3?

12. Consider a biased random walk with reflecting boundaries on 19. Consider the mouse in the following maze, which includes

{1.2,3,4} with probability p = .2 of moving to the left.

“one-way"” doors, from Section 10.1, Exercise 19.

a. Find the transition matrix for the Markov chain and show
that this matrix is not regular.

b. Assuming that the steady-state vector may be interpreted
as occupation times for this Markov chain, in what state
will this chain spend the most steps?

1 2 3
N
4 | 5(6

In Exercises 13 and 14, consider a simple random walk on the
given graph. In the long run, what fraction of the time will the
walk be at each of the various states?

13. 14.

is a st

Show that

—ococooo

Markov chain, and

dy-state vector for the

interpret this result in terms of the mouse’s travels through
the maze.






