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Section 7.1 : Diagonalization of Symmetric Topics
Matrices 1. Symmetric matrices
2. Orthogonal diagonalizati
3. Spectral decomposition
Chapter 7: Orthogonality and Least Squares

Math 1554 Linear Algebra Learning Objectives

1. Construct an orthogonal diagonalization of a symmetric matrix,
DPT

ion

2. Construct a spectral decomposition of a matrix.
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Matrix A is symmetric if AT = A.

Example. Which of the following matrices are symmetric? Symbols *
and « represent real numbers.

sl e-fdl

4.2 01
4 2
¥ 2074
D[oo] E=lel e
140 3
S S———

. .
o art e
Ama= | 2T

afar afa

anay ajap

A very common example: For any matrix A with columns a1, ..., a,,

afay
ajay

ajay,

Entries are the dot products of columns of A

Aisa ic matrix, with ej ¥ and ¥
to two distinct eigenvalues. Then #; and %, are orthogonal.

More generally, eigenspaces associated to distinct eigenvalues are
orthogonal subspaces.

Proof:
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Di A using an orthogonal matrix. of A are given.
001
a={01 0], a=-11
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Recall: If P is an orthogonal n x n matrix, then P~ = PT, which
implies A= PDP” is diagonalizable and symmetric. pectral
Suppose A can be orthogonally diagonalized as
An n x n symmetric matrix A has the following properties. A e 0] i
—PDPT =@, -- 4@
1. Al eigenvalues of A are : A=PDP"=[ay - @)
0 o ] T
2. The dimenison of each eigenspace is full, that it's
dimension is equal to it's algebraic multiplicity. Then A has the decomposition
3. The eigenspaces are mutually orthogonal. n
A= NI+ + Al = Y Nilidl!
4. A can be diagonalized: A = PDPT, where D is diagonal =1
and Pis .
. . .
Proof (if time permits): Each term in the sum, A}, is an n x n matrix with rank 2



Construct a spectral decomposition for A whose orthogonal
diagonalization is given.

A= (3 ‘) — PDPT

13
- (94 ) (6 94 1)
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7.1 Exercises

D which of the in E: 1-6 are you time, the eigenvalues in E 17-22 are the
(17) =4, 4, 7; (18) =3, =6, 9. (19) =2, 7. (20) =3, 15; (2I)I -
1 | Y B 9:(22)3,5.
5 =7 -5 =3
- KR | 1 =5
5 0 8 3 13. [l 3] 4. [—5 I]
k § [2 4] 4. |8 0 -4
X 2 0
3 4 6 =2
-% 2 0 P! 2 2 1 "-[4 9] "[-z 9]
s, 2 -6 2 &l2 2 2 1
0 2 =6 2 2 ¥ a2 _ =
I ok 0 1 -6 4
D which of the matrices in E 7-12areorthogonal. 37 |1 5 1 1. |- 2 =
If orthogonal, find the inverse. 5 | 4 <2 o
6 8 1 1
g ] Y ]
8 =6 1 =1 'S -2 & [ 5 8 =4
19. |=2 6 2 20. 8 5 -4
13 2/3 23
9. ';/: f/:] w0 |23 13 =23 |4 2.3 | =4 =4 =1
/s 4/ 23 =23 13
My A o P o 4 01
1wl o 13 =253 3 |5 s a2 s B
5/3 =4/3 =2/3
L! B 3% Lo 1 o0 4
S5 5 =5=5
N A .
e oy 8. Letd=|=1 4 =1 adv= I . Verify that § is
S5 =5 5 =5 T 4
Orth lly di lize the ices in Exercises 13-22, giv- mc-gemalueoanndvumelgaweclmThenmﬂngmalIy

m;anonhogoulmmxl’ndadngomlmmxb To save

NELE o

diagonalize A.

38. Suppose A = PRP~' where P is orthogonal and R is upper
triangular. Show that if A is symmetric, then R is symmetric
and hence is actually a diagonal matrix.

1 =
=1 |. Verify et v, and vy ase cigenvectors of A. Thea 39. Construct a spectral decomposition of A from Example 2.
1 40. Construct a spectral decomposition of A from Example 3.
T 41 Letube a unit vector in R*, and let B = uu’.
In Exercises 25-32, mark each statement True or False (T/F). a. Given any x in R”, compute Bx and show that Bx is
Justify each answer. the orthogonal projection of x onto u, as described in
25. (T/F) An n x n matrix that is orthogonally diagonalizable Section 6.2.
must be symmetric. b. Show that B is a symmetric matrix and B> = B.
26. (T/F) There are sy " ioes that are sot orthogo- c. Show_lhﬂe:une:ganmo(ﬂ.wuumem
nally diagonalizable.
42. Let B be an n x n symmetric matrix such that B = B. Any
27. (T/F) An matrix is orth i such matrix is called a projection matrix (or an orthogonal
A posp °
28. (T/F) If B = PDPT, where PT = P=" and D is a diago- '::‘;‘f';_"")' e B A At
nal matrix, then B is a symmetric matrix. : " a
a. Show that z is orthogonal to §.
29. (T/F) For a nonzero v in R", the matrix w” is called a b. Let W be the column space of B. Show that y is the sum
projection matrix. of a vector in W and a vector in W Why does this prove
30. (T/F) If A7 = Aand if vectors uand v satisfy Au = 3uand w«z{“;“’” ol y st e colemd
Av=4dv. thenu-v=0. :
Orthogonally diagonalize the matrices in Exercises 43—46. To
31 (T/F) An n>xn symmetric matrix has n distinct real  practice the methods of this section, do not use an eigenvector
eigenvalues. routine from your matrix program. Instead, use the program to find
. O Tttt S5, 5 e Lk 2
uwmmd:mnhplclydlhmmspomng i :
cigenvalue. f6 2 9 =6
o o go. | 2 66 9
33. Show that if A is an n x n symmetric matrix, then (Ax)-y = g <E 5 3
x-(Ay) forall x.y in R". -6 9 2 6
34. Suppose A is a symmetric n X n matrix and B is any n x m 63 =18 =06 =04
matrix. Show that B7AB, B”B. and BB” are symmetric Haa |18 84 -04 2
matrices. -06 =04 72 =12
_ -04 .12 =12 .66
35. Suppose A is and a
Explain why A"ulhnotﬂmgom.llydngmnhnbh [31 58 08 44
s 58 =56 .44 =58
36. Suppose A and B are both orthogonally diagonalizable and 08 44 .19 =08
AB = BA. Explain why AB is also orthogonally diagonaliz- 44 =58 =08 31
able. &
[8 2 2 -6 9
37. Let A = PDP™' where P is orthogonal and D is diagonal, 2 8 2 =6 9
and let A be an eigenvalue of A of multiplicity k. Then | 46, 2 2 8 =6 9
A appears k times on the diagonal of D. Explain why the -f =6 =6 24 9
dimension of the eigenspace for A is k. 9 9 9 9 =21
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Section 7.2 : Quadratic Forms

Chapter 7: Orthogonality and Least Squares

Math 1554 Linear Algebra

Topics
1. Quadratic forms
2. Change of variables
3. Principle axes theorem
4. Classifying quadratic forms

Learning Objectives
1. Characterize and classify quadratic forms using eigenvalues and
eigenvectors.
2. Express quadratic forms in the form Q(7) = #7AZ.
3. Apply the principle axes theorem to express quadratic forms with no
cross-product terms
Motivating Question Does this inequality hold for all z,y?
2 —bay +9y* 20

Compute the quadratic form # A7 for the matrices below.

R

Matrix A is n x n and symmetric.

In the above, 7 is a vector of variables.

‘The surfaces for Example 1 are shown below.

Students are not expected to be able to sketch quadratic surfaces, but it
s helpful to sce what they look like.
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cle File Edit View Insert Tools Desktop Window Help >

format bank = 3

%% example la Daue@n@hm

[X,Y]=meshgrid(-2:.1:2);

Z=4.*X."2+3.%Y."2;

[X1,Y1,Z1l]=cylinder(1l);

%s=surf(X,Y,%, 'FaceAlpha',0.5); hold on 20

%% example 1b
Z=4.%¥X. 242 . %X . *Y-3.%Y."2;
%s=surf(X,Y,%, 'FaceAlpha',0.5); hold on

]

%% example 6

%[X,Y]=meshgrid(-2:.2:2);
Z=X."2-6.*%X.*Y+9.*Y."2;

s=surf(X,Y,%, FaceAlpha',0.5); hold on
[P,D]=eig([1 -3 ; -3 9])

=P*D*inv(P)

rref(A-10*eye(2))

%% plots cylinder

h=max(z(:));

21=21%h;

%21(1,:)=-21(2,:);

c=surf(X1,Y1,21, 'FaceAlpha',0.1); hold on

%% no errors check
1+1




Write Q in the form &7 A7 for & € R®. If Z is a variable vector in R", then a change of variable can be

represented as
Q(z) = 521 — o} + 32§ + 62125 — 122073 F=P§, or j=P&

With this change of variable, the quadratic form 7 A% becomes:

Setion 72 Side 385 Setion 72 Side 386

Example 3

Make a change of variable & = Py that transforms Q = #7 AZ so that it
does not have cross terms. The orthogonal decomposition of A is given.

_(3 2)_ T
A_(z 6)—PDP

(52)



Principle Axes Theorem

If Ais a

matrix then there exists an
orthogonal change of variable ¥ = Pj that transforms &7 AT to
ZT D with no cross-product terms.

Example 3

Make a change of variable & = Pj that transforms Q = #T AZ so that it
does not have cross terms. The orthogonal decomposition of A is given.
A= <3 2

= T
) 6) =PDP

Example 5

Compute the quadratic form Q = ZTAZ for A = (2 g) and find a
change of variable that removes the cross-product term. A sketch of Q is
below.

T2 semi-minor axis

zy

semi-major axis




Classifying Quadratic Forms

Q=ai+1}

Definition
A quadratic form @ is

1. positive definite if for all # # 0.

2. negative definite if for all Z # 0.
3. positive idefinite if for all Z.
4. negative idefinite if for all Z.
5. indefinite if

Quadratic Forms and Eigenvalues

If Ais a
then Q = ¥ TAZ is

matrix with eigenvalues \;,

1. positive definite iff \;

2 ive definite iff \;

3. indefinite iff \;

Example 6

We can now return to our motivating question (from first slide): does
this inequality hold for all z,y?

z2—61y+9y220

Negative definite

Indefinite
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clec

format bank

%% example la

[X,Y]=meshgrid(-2:.1:2);
2=4.%*X."2+3.%Y."2;
[X1,Y1,21]=cylinder(1);

%$s=surf(X,Y,%, "FaceAlpha',0.5); hold on

%% example 1lb
Z=4.%X."2+2.%X.*Y-3.%Y."2;
%s=surf(X,Y, 2, "FaceAlpha',0.5); hold on

%% example 6

%[X,Y]=meshgrid(-2:.2:2);
Z=X."2-6.*¥X.*Y+9.*Y."2;

s=surf(X,Y,%, 'FaceAlpha',0.5); hold on
[P,D]=eig([l -3 ; -3 9])

A=P*D*inv(P)

rref (A-10*eye(2))

%% plots cylinder

h=max(Z(:));

71=21+%h;

$21(1,:)=-21(2,:);

c=surf(X1,Y1l,%z1, 'FaceAlpha',0.1); hold on

%% no errors check
1+1

Q fz=xt-bxy+9
O «lx+y=1

o0 0
File Edit View Insert Tools

Figure 1
Desktop Window Help

Dede @ 0B RE




7.2 EXERCISES

1. Compute the quadratic form x”Ax, when 4 = [133 1{3]
and
_|x _ |6 !
A N
3 2 0

L

Compute the quadratic form x’Ax,for A = |2 2 1
0o 1 0
and

5. Find the matrix of the quadratic form. Assume x is in R*.
a. 3x7 + 2x2 — 5x3 — 6x1x2 + 8x1x3 — 4x5x3
b. 6x1x2 + 4x1x3 — 10x2Xx3
6. Find the matrix of the quadratic form. Assume x is in R*.
a. 3x7 —2x3 + 5x3 + 4xix2 — 6x1x3
b. 4x] —2x1x2 + 4x2x3
7. Make a change of variable, x = Py, that transforms the

quadratic form x7 + 10x,x> + x3 into a quadratic form with
no cross-product term. Give P and the new quadratic form.

8. Let A be the matrix of the quadratic form
9x7 + 7x3 + 11x3 — 8x;x, + 8xx3

It can be shown that the eigenvalues of A are 3,9, and 15.
Find an orthogonal matrix P such that the change of variable
x = Py transforms x"4x into a quadratic form with no cross-
product term. Give P and the new quadratic form.

Classify the quadratic forms in Exercises 9-18. Then make a
change of variable, x = Py, that transforms the quadratic form
into one with no cross-product term. Write the new quadratic form.
Construct P using the methods of Section 7.1.

9. 4x7 —4x;x; + 4x3 10. 2x7 + 6x;x, — 6x3
11, 2x7 —4x,x, — X3
13 .\'lz —6x1x2 + 9.\’% 14. 3.\’|2 + 4x1x2

15. [M] —=3x7 — 7x3 — 10x3 — 10x] + 4x1x2 + 4x1x3+
4x1x4 + 6x3x4

16. [M] 4x7 + 4x3 + 4x7 + 4x7 + 8x,x2 + 8x30x5 — 6xyx4 +
6x5x3

17. [M] 11x7 + 1123 + 112 + 11x3 + 163,55 — 12x, x4+
12x5x3 + 16x3x4

18. [M] 2.\:,2 + 2x§ — 6xXx; — 6x,X3 — 6x)x5 — 6X3X3—
6x3x4 — 2X3X4

12, —x] —2xyx; — x3

19. What is the largest possible value of the quadratic
form 5x} + 8x3 if x = (x;,x;) and x'x = 1, that is, if
X7 4 x3 = 17 (Try some examples of x.)

20. What is the largest value of the quadratic form 5x7 — 3x3 if

x'x=1?

In Exercises 21 and 22, matrices are n x n and vectors are in R”.
Mark each statement True or False. Justify each answer.
21. a.

b. A quadratic form has no cross-product terms if and only
if the matrix of the quadratic form is a diagonal matrix.

The matrix of a quadratic form is a symmetric matrix.

c. The principal axes of a quadratic form x”Ax are eigenvec-
tors of A.

X -2 1/V2
ax=lx b.x=| -1 c.xX= l/ﬁ
X3 5 1/v2
3. Find the matrix of the quadratic form. Assume x is in R2.
a. 3x] —4x;x; + 5x3 b.3x] + 2x1x;

4. Find the matrix of the quadratic form. Assume x is in R?.
a. Sx} + 16x,x; — 5x3 b. 2x,x;

d. A positive definite quadratic form Q satisfies Q(x) > 0
for all x in R”.

e. If the eigenvalues of a symmetric matrix A are all posi-
tive, then the quadratic form x”Ax is positive definite.

f. A Cholesky factorization of a symmetric matrix A has
the form A = R”R, for an upper triangular matrix R with
positive diagonal entries.

22, a.

b. If A is symmetric and P is an orthogonal matrix, then
the change of variable x = Py transforms x’Ax into a
quadratic form with no cross-product term.

The expression [|x||? is not a quadratic form.

c. If A is a 2 x 2 symmetric matrix, then the set of x such
that x’Ax = ¢ (for a constant c) corresponds to either a
circle, an ellipse, or a hyperbola.

d. An indefinite quadratic form is neither positive semidef-
inite nor negative semidefinite.

e. If A is symmetric and the quadratic form x’Ax has only
negative values for x # 0, then the eigenvalues of A are
all positive.

Exercises 23 and 24 show how to classify a quadratic form
0@®) =xUx,whead=|? 2 ] anddet A # 0, without find-

b d
ing the eigenvalues of 4.

23. If A, and A, are the eigenvalues of A, then the characteristic
polynomial of A can be written in two ways: det(4 — A7)
and (A — A,)(A — A,). Use this fact to show that A, + A, =
a + d (the diagonal entries of A) and A1, = det A.

24. Verify the following statements.
a. Q is positive definite if det A > Oand a > 0.
b. Q is negative definite if det A > O anda < 0.
c. Q isindefinite if det 4 < 0.

25. Show that if B is m x n, then BB is positive semidefinite;
and if B is n x n and invertible, then B”B is positive definite.

26. Show that if an n x n matrix A is positive definite, then there
exists a positive definite matrix B suchthat A = B'B.[Hint:
Write A = PDP" ,with PT = P~ Produce a diagonal ma-
trix C such that D = C'C, and let B = PCP7”. Show that
B works.]

PO

27. Let A and B be symmetric n x n matrices whose eigenvalues
are all positive. Show that the eigenvalues of A + B are all
positive. [Hint: Consider quadratic forms.]

28. Let A be an n x n invertible symmetric matrix. Show that
if the quadratic form x"Ax is positive definite, then so is the
quadratic form x’A~"x. [Hint: Consider eigenvalues.]

and Q ic Forms  7-7
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Topics The surface of a unit sphere in R? is
1. Constrai imization as an eigenvalue problem given by '
2. Distance and orthogonality constraints \=2+ad+ad = AP . b

o Objas Qisa quantity we want to opimize | >,
1. Apply eij and ei to solve optimization problems Q(Z) = 927 + 423 + 323 ,:’ el n,a

that are subject to distance and orthogonality constraints.
Find the largest and smallest values of Q on the surface of the sphere.

Ex. Find the largest output z-value with
restricted input ||x||=1 where z is given by:

z=3x2+7x2.

FIGURE 1 z = 3x] + 7x3. FIGURE 2 The intersection of
2 = 3x} + 7x3 and the cylinder
xd+xd=1.



3 2: 1
EXAMPLE 3 LetA=|2 3 1
1 1 4
form x7Ax subject to the constraint x’x = 1, and find a unit vector at which this maxi-
mum value is attained.

. Find the maximum value of the quadratic

SOLUTION By Theorem 6, the desired maximum value is the greatest eigenvalue of
A. The characteristic equation turns out to be

0=-234+10A2-271 + 18 = —(A —6)(A —3)(A — 1)
The greatest eigenvalue is 6.

EXAMPLE 5 Let A be the matrix in Example 3 and let u; be a unit eigenvector
corresponding to the greatest eigenvalue of A. Find the maximum value of x”Ax subject

to the conditions

xXx=1, xu; =0

4)



Suppose we wish to find the maximum or minimum values of

Q@) =274z
subject to
Izl =1
That is, we want to find
m = min{Q(#) : 18] = 1}
M = max{Q(@) : 17 = 1}

This is an example of a constrained optimization problem. Note that
we may also want to know where these extreme values are obtained.

Calculate the maximum and minimum values of Q(7) = #7 A%, 7 € R,
subject to ||7]| = 1, and identify points where these values are obtained.

Q(@) = ai + 2m975

If Q= #TAZ, A'is a real n x n symmetric matrix, with cigenvalues
M2 20
and associated normalized eigenvectors

iy, ...,

Then, subject to the constraint ||Z|| = 1,
« the maximum value of Q(Z) = A1, attained at 7 = + 1.
« the minimum value of Q(Z) = A, attained at & = % .

The image below is the unit sphere whose surface is colored according to
the quadratic from the previous example. Notice the agreement between
our solution and the image.

2
1
1
05
o0 o
05
-
4 y
4 -
0 0
171 2
X, X



Calculate the maximum value of Q(%) = T AZ, 7 € R, subject to
||Z]| =1 and to Z -iiy = 0, and identify a point where this maximum is

Suppose Q = #TAZ, A is a real n x n symmetric matrix, with obtained.
eigenvalues g
D= et > e Q@) =2 + 20303, 3:(0)
and associated eigenvectors 0
Uyl Uy
Subject to the constraints ||Z]| = 1 and & - &i; = 0,
« The maximum value of Q(Z) = Ay, attained at 7 = ..
« The minimum value of Q(%) = An, attained at & = iin.
Note that A, is the second largest eigenvalue of A.
PR - seors s
Calculate the maximum value of Q(#) = # T AZ, & € R?, subject to
||]| = 5, and identify a point where this maximum is obtained. . . . . . . .

Q(@) =23 + 22325

Setion 73 Side 303



7.3 EXERCISES

In Exercises 1 and 2, find the change of variable x = Py that
transforms the quadratic form x’Ax into y’ Dy as shown.

1. 5x]+6x3+7x3 +4x,x—4x,x3 =9y] +6y3 +3y3
2. 3x743x34+5x3 4+ 631X+ 2x, X3+ 2x2x3 = Ty] +4y3

Hint: x and y must have the same number of coordinates, so the
quadratic form shown here must have a coefficient of zero for y3.

416 CHAPTER 7 Symmetric Matrices and Quadratic Forms

4. Q(x) = 3x]+3x3 +5x3 +6x1x242x1 X3+ 2x2x3 (See Exer-
cise 2.)

5. 0(x) =x}+x3—

6. O(x) =3x7 4+ 9x? +8xix2

7. Let Q(x) = —2x] — x3 + 4x,x; + 4x,x;. Find a unit vector
x in R* at which Q(x) is maximized, subject to x'x = 1.
[Hint: The eigenvalues of the matrix of the quadratic form
Qare2,~1,and —4.]

8. Let O(x) = 7x} + x3 + 7x7 — 8x,x; — 4x,x3 — 8x, .
Find a unit vccwr x in R? at which Q(x) is i d ab

10x, x5

subject to x’x = 1. [Hint: The eigenvalues of the matrix of
the quadratic form Q are 9 and —3.]

9. Find the maximum value of Q(x) = 7x} + 3x3 —2x;x,,
subject to the constraint x{ + x3 = 1. (Do not go on to find
a vector where the maximum is attained.)

10. Find the maximum value of Q(x) = —3x} + 5x3

cises 3-6.

—2xyx3,

In Exercises 3-6, find (a) the maximum value of Q(x) subject to
the constraint x’x = 1, (b) a unit vector u where this maximum is
attained, and (c¢) the maximum of Q(x) subject to the constraints
x’x = 1 and x"u = 0.

O(x) = 5x7 + 6x3 + 7x3 + 4x;x; — 4x5x3
(See Exercise 1.)

12. Let A be any eigenvalue of a symmetric matrix A. Justify
the statement made in this section that m < A < M, where
m and M are defined as in (2). [Hint: Find an x such that
A =x"Ax)

13. Let A be ann x n symmetric matrix, let M and m denote the
maxnmum and minimum values of the quadmnc form x7Ax,
where x”x = 1, and denote g unit
by u; and u,. The following ca.lculanons show lhat given any
number 7 between M and m, there is a unit vector x such that
t = x"Ax. Verify thatt = (1 — a&)m + aM for some number

0 and 1. Then let x = v/1 —au, + /au,, and

show that x"x = 1 and x"Ax = 1.

[M] In Exercises 14-17, follow the instructions given for Exer-

14, 3x,x2 + 5x1x3 + Tx1X4 + Tx2x3 + 5x2x8 + 3x3x4

subject to the constraint x7 + x% = 1. (Do not go on to find 15, 4x7—6x;x,—10x,x3— 10X, X5 —6x2x3 —6X2X4 —2X3X4

a vector where the maximum is attained.)
11. S

S

of a matrix A

X is a unit eig

16. —6x7 —10x3 —13x3 — 13x] —4x; X2 —4x; 03— 4x, X4 + 634

to an eigenvalue 3. What is the value of x’Ax? 17. xyx3 + 3x;x3 + 30x,x4 + 30x2x3 + 3x2x4 + X3X4



