

## Section 7.1 : Diagonalization of Symmetric Matrices

Chapter 7: Orthogonality and Least Squares

Math 1554 Linear Algebra

|                                                                                                                                                                                                                                       |                   |                                                                                                                                                                                                                      |            |      | ourse Sche                       |                |                                        |                                           |                                          |                                   |             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|----------------------------------|----------------|----------------------------------------|-------------------------------------------|------------------------------------------|-----------------------------------|-------------|
|                                                                                                                                                                                                                                       |                   |                                                                                                                                                                                                                      |            |      | cellations due to in<br>ok Dates | Mon<br>Lecture | ther will likely resu<br>Tue<br>Studio | It in cancelling review<br>Wed<br>Lecture | w lectures and possible<br>Thu<br>Studio | ly moving throu<br>Fri<br>Lecture | gh course r |
|                                                                                                                                                                                                                                       | Topics a          | and Objectives                                                                                                                                                                                                       |            | 1    | 8/21 - 8/25                      | 1.1            | WS1.1                                  | 1.2                                       | WS1.2                                    | 1.3                               |             |
| Section 7.1 : Diagonalization of Symmetric                                                                                                                                                                                            | Topics            |                                                                                                                                                                                                                      |            | 2    | 8/28 - 9/1                       | 1.4            | W51.3,1.4                              | 1.5                                       | WS1.5                                    | 1.7                               |             |
| Matrices                                                                                                                                                                                                                              | 1. Sy             | mmetric matrices rthogonal diagonalization                                                                                                                                                                           |            | 3    | 9/4 - 9/8                        | Break          | WS1.7                                  | 1.8                                       | WS1.8                                    | 1.9                               |             |
| Chapter 7: Orthogonality and Least Squares                                                                                                                                                                                            |                   | pectral decomposition                                                                                                                                                                                                |            | 4    |                                  | 2.1            | W\$1.9.2.1                             | Exam 1, Review                            | Cancelled                                | 2.2                               |             |
| Math 1554 Linear Algebra                                                                                                                                                                                                              |                   | ng Objectives                                                                                                                                                                                                        |            | 5    |                                  | 2.3,2.4        | W52.2,2.3<br>W52.8.2.9                 | 3.1.3.2                                   | WS2.4,2.5<br>WS3.1,3.2                   | 2.8                               |             |
|                                                                                                                                                                                                                                       | 1. C              | construct an orthogonal diagonalization of a symmetric matrix, $=PDP^{T}$ .                                                                                                                                          |            | 7    | 10/2 - 10/6                      | 4.9            | W\$3.3,4.9                             | 5.1,5.2                                   | WS5.1,5.2                                | 5.2                               |             |
|                                                                                                                                                                                                                                       | 2. <b>C</b>       | onstruct a spectral decomposition of a matrix.                                                                                                                                                                       |            | 8    | 10/9 - 10/13                     | Break          | Break                                  | Exam 2, Review                            | Cancelled                                | 5.3                               |             |
|                                                                                                                                                                                                                                       |                   |                                                                                                                                                                                                                      |            | 9    | 10/16 - 10/20                    | 5.3            | WS5.3                                  | 5.5                                       | WS5.5                                    | 6.1                               |             |
|                                                                                                                                                                                                                                       |                   |                                                                                                                                                                                                                      |            | 10   | 10/23 - 10/27                    | 6.1,6.2        | WS6.1                                  | 6.2                                       | W\$6.2                                   | 6.3                               |             |
|                                                                                                                                                                                                                                       |                   |                                                                                                                                                                                                                      |            | 11   | 10/30 - 11/3                     | 6.4            | W56.3,6.4                              | 6.4,6.5                                   | WS6.4,6.5                                | 6.5                               |             |
| Stde St1                                                                                                                                                                                                                              | Section 7.1 Stide | 382                                                                                                                                                                                                                  |            | 12   | 11/6 - 11/10                     |                | W56.5,6.6                              | Exam 3, Review                            | Cancelled                                | PageRar                           | ık          |
|                                                                                                                                                                                                                                       |                   |                                                                                                                                                                                                                      |            | 13   | 11/13 - 11/17                    |                | WSPageRank                             | 7.2                                       | W\$7.1,7.2                               | 7.3                               |             |
|                                                                                                                                                                                                                                       |                   |                                                                                                                                                                                                                      |            | 14   | 11/20 - 11/24                    |                | W57.2,7.3<br>W57.3,7.4                 | Break<br>7.4                              | Break<br>WS7.4                           | Break<br>7.4                      |             |
|                                                                                                                                                                                                                                       |                   |                                                                                                                                                                                                                      |            | 16   | 12/4 - 12/8                      | Last lecture   |                                        | Reading Period                            |                                          |                                   |             |
|                                                                                                                                                                                                                                       |                   |                                                                                                                                                                                                                      |            | 17   | 12/11 - 12/15                    | Final Exame    | s: MATH 1554 Co                        | mmon Final Exam Tu                        | esday, December 12                       | th at 6pm                         |             |
|                                                                                                                                                                                                                                       |                   |                                                                                                                                                                                                                      |            |      |                                  |                |                                        |                                           |                                          |                                   |             |
| symmetric Matrices                                                                                                                                                                                                                    |                   | $A^TA$ is Symmetric                                                                                                                                                                                                  |            |      |                                  |                |                                        |                                           |                                          |                                   |             |
| ,                                                                                                                                                                                                                                     |                   | A very common example: For any matrix $A$ with columns $a_1$ ,.                                                                                                                                                      | 0          |      |                                  |                |                                        |                                           |                                          |                                   |             |
| $\begin{tabular}{ c c c c c }\hline \textbf{Definition} \\ \hline \textbf{Matrix $A$ is symmetric if $A^T=A$.} \\ \hline \end{tabular}$                                                                                               |                   | r 7 7                                                                                                                                                                                                                | ,,         |      |                                  |                |                                        |                                           |                                          |                                   |             |
| Example. Which of the following matrices are symmetric? Symbols *                                                                                                                                                                     |                   | $A^T A = \begin{bmatrix} - & a_1^1 & - \\ - & a_2^T & - \\ \vdots & \vdots & \vdots \\ - & a^T & - \end{bmatrix} \begin{bmatrix}   &   & \cdots &   \\ a_1 & a_2 & \cdots & a_n \\   &   & \cdots &   \end{bmatrix}$ |            |      |                                  |                |                                        |                                           |                                          |                                   |             |
| and * represent real numbers.                                                                                                                                                                                                         |                   | $\begin{bmatrix} a_1^T a_1 & a_1^T a_2 & \cdots & a_1^T a_n \\ a_2^T a_1 & a_2^T a_2 & \cdots & a_2^T a_n \end{bmatrix}$                                                                                             |            |      |                                  |                |                                        |                                           |                                          |                                   |             |
| $A = [*]$ $B = \begin{bmatrix} * & \star \\ \star & * \end{bmatrix}$ $C = \begin{bmatrix} 4 & 0 \\ 0 & 0 \end{bmatrix}$                                                                                                               |                   | $= \begin{vmatrix} a_2^i a_1 & a_2^i a_2 & \cdots & a_2^i a_n \\ \vdots & \vdots & \ddots & \vdots \end{vmatrix}$                                                                                                    |            |      |                                  |                |                                        |                                           |                                          |                                   |             |
| [4 2 0 1]                                                                                                                                                                                                                             |                   | $\underbrace{\begin{bmatrix} a_n^T a_1 & a_n^T a_2 & \cdots & a_n^T a_n \end{bmatrix}}_{}$                                                                                                                           |            |      |                                  |                |                                        |                                           |                                          |                                   |             |
| $D = \begin{bmatrix} \star & \star \\ 0 & 0 \end{bmatrix} \qquad E = \begin{bmatrix} 4 & 2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad F = \begin{bmatrix} 4 & 2 & 0 & 1 \\ 2 & 0 & 7 & 4 \\ 0 & 7 & 6 & 0 \\ 1 & 4 & 0 & 3 \end{bmatrix}$ |                   | Entries are the dot products of columns of $\Lambda$                                                                                                                                                                 |            |      |                                  |                |                                        |                                           |                                          |                                   |             |
|                                                                                                                                                                                                                                       |                   |                                                                                                                                                                                                                      |            |      |                                  |                |                                        |                                           |                                          |                                   |             |
|                                                                                                                                                                                                                                       |                   |                                                                                                                                                                                                                      |            |      |                                  |                |                                        |                                           |                                          |                                   |             |
| ccion 7.1 Skde 353                                                                                                                                                                                                                    |                   | Section 5.1 Slide 354                                                                                                                                                                                                |            |      |                                  |                |                                        |                                           |                                          |                                   |             |
|                                                                                                                                                                                                                                       |                   |                                                                                                                                                                                                                      |            |      |                                  |                |                                        |                                           |                                          |                                   |             |
|                                                                                                                                                                                                                                       |                   |                                                                                                                                                                                                                      |            |      |                                  |                |                                        |                                           |                                          |                                   |             |
|                                                                                                                                                                                                                                       |                   |                                                                                                                                                                                                                      |            |      |                                  |                |                                        |                                           |                                          |                                   |             |
|                                                                                                                                                                                                                                       |                   |                                                                                                                                                                                                                      |            |      |                                  |                |                                        |                                           |                                          |                                   |             |
|                                                                                                                                                                                                                                       |                   |                                                                                                                                                                                                                      |            |      |                                  |                |                                        |                                           |                                          |                                   |             |
|                                                                                                                                                                                                                                       |                   |                                                                                                                                                                                                                      |            |      |                                  |                |                                        |                                           |                                          |                                   |             |
| Symmetric Matrices and their Eigenspaces                                                                                                                                                                                              |                   | Example 1                                                                                                                                                                                                            |            |      |                                  |                |                                        |                                           |                                          |                                   |             |
| Symmetric Matrices and their Ligenspaces                                                                                                                                                                                              |                   |                                                                                                                                                                                                                      |            |      |                                  |                |                                        |                                           |                                          |                                   |             |
| Theorem                                                                                                                                                                                                                               | )                 | Diagonalize A using an orthogonal matrix. Eigenvalues                                                                                                                                                                | of $A$ are | give | n.                               |                |                                        |                                           |                                          |                                   |             |
| $A$ is a symmetric matrix, with eigenvectors $\vec{v}_1$ and $\vec{v}_2$ corresponding to two distinct eigenvalues. Then $\vec{v}_1$ and $\vec{v}_2$ are orthogonal.                                                                  |                   | $A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix},  \lambda = -1, 1$                                                                                                                            |            |      |                                  |                |                                        |                                           |                                          |                                   |             |
| More generally, eigenspaces associated to distinct eigenvalues are                                                                                                                                                                    |                   | (1 0 0)                                                                                                                                                                                                              |            |      |                                  |                |                                        |                                           |                                          |                                   |             |
| orthogonal subspaces.                                                                                                                                                                                                                 | J                 |                                                                                                                                                                                                                      |            |      |                                  |                |                                        |                                           |                                          |                                   |             |
| Proof:                                                                                                                                                                                                                                |                   |                                                                                                                                                                                                                      |            |      |                                  |                |                                        |                                           |                                          |                                   |             |
|                                                                                                                                                                                                                                       |                   |                                                                                                                                                                                                                      |            |      |                                  |                |                                        |                                           |                                          |                                   |             |
|                                                                                                                                                                                                                                       |                   |                                                                                                                                                                                                                      |            |      |                                  |                |                                        |                                           |                                          |                                   |             |
|                                                                                                                                                                                                                                       |                   |                                                                                                                                                                                                                      |            |      |                                  |                |                                        |                                           |                                          |                                   |             |
|                                                                                                                                                                                                                                       |                   |                                                                                                                                                                                                                      |            |      |                                  |                | -                                      |                                           |                                          | -                                 |             |
| section 7.3 Silida 355                                                                                                                                                                                                                |                   | Section 7.1 Stide 356                                                                                                                                                                                                |            |      |                                  |                |                                        |                                           |                                          |                                   |             |
|                                                                                                                                                                                                                                       |                   | _                                                                                                                                                                                                                    |            |      |                                  |                |                                        |                                           |                                          |                                   |             |
|                                                                                                                                                                                                                                       |                   |                                                                                                                                                                                                                      |            |      |                                  |                |                                        |                                           |                                          |                                   |             |

### Spectral Theorem

 $\begin{array}{ll} \textbf{Recall:} \ \ \textbf{If} \ P \ \ \textbf{is} \ \ \textbf{an orthogonal} \ n \times n \ \ \textbf{matrix, then} \ P^{-1} = P^T, \ \textbf{which} \\ \text{implies} \ A = PDP^T \ \ \textbf{is} \ \ \textbf{diagonalizable} \ \ \textbf{and} \ \ \textbf{symmetric.} \\ \hline \\ \textbf{Theorem:} \ \ \textbf{Spectral Theorem} \\ \end{array}$ An  $n \times n$  symmetric matrix A has the following properties.

1. All eigenvalues of  $\boldsymbol{A}$  are \_\_\_\_ 2. The dimenison of each eigenspace is full, that it's

dimension is equal to it's algebraic multiplicity.

3. The eigenspaces are mutually orthogonal. 4. A can be diagonalized:  $A = PDP^T$ , where D is diagonal

and P is  $\_$ Proof (if time permits):

Section 7.1 Slide 357

Spectral Decomposition of a Matrix

Spectral Decomposition

Suppose A can be orthogonally diagonalized as  $A = PDP^T = \begin{bmatrix} \vec{u}_1 & \cdots & \vec{u}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix} \begin{bmatrix} \vec{u}_1^T \\ \vdots \\ \vec{u}_n^T \end{bmatrix}$ 

Then  ${\cal A}$  has the decomposition

 $A = \lambda_1 \vec{u}_1 \vec{u}_1^T + \dots + \lambda_n \vec{u}_n \vec{u}_n^T = \sum_{i=1}^n \lambda_i \vec{u}_i \vec{u}_i^T$ 

Each term in the sum,  $\lambda_i \vec{u}_i \vec{u}_i^T$ , is an  $n \times n$  matrix with rank

Section 7.1 Slide 358

### Example 2

Construct a spectral decomposition for  $\boldsymbol{A}$  whose orthogonal diagonalization is given.

$$\begin{split} A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} = PDP^T \\ &= \begin{pmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} \end{split}$$

action 71 Ctds 250

### 7.1 Exercises

Determine which of the matrices in Exercises 1-6 are symmetric.

1. 
$$\begin{bmatrix} 3 & 5 \\ 5 & -7 \end{bmatrix}$$
 2. 
$$\begin{bmatrix} 3 & -5 \\ -5 & -3 \end{bmatrix}$$

5. 
$$\begin{bmatrix} -6 & 2 & 0 \\ 2 & -6 & 2 \\ 2 & 6 & 2 \\ \end{bmatrix}$$
 6.  $\begin{bmatrix} 1 & 2 & 2 & 1 \\ 2 & 2 & 2 & 1 \\ 2 & 2 & 2 & 1 \\ \end{bmatrix}$ 

Determine which of the matrices in Exercises 7–12 are orthogonal. If orthogonal, find the inverse.

7. 
$$\begin{bmatrix} .6 & .8 \\ .8 & -.6 \end{bmatrix}$$
 8.  $\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$  9.  $\begin{bmatrix} -4/5 & 3/5 \\ 3/5 & 4/5 \end{bmatrix}$  10.  $\begin{bmatrix} 1/3 & 2/3 & 2/3 \\ 2/3 & 1/3 & -2/3 \\ 2/3 & -2/3 & 1/3 \end{bmatrix}$ 

Orthogonally diagonalize the matrices in Exercises 13–22, giving an orthogonal matrix P and a diagonal matrix D. To save

you time, the eigenvalues in Exercises 17–22 are the following: (17) –4, 4, 7; (18) –3, –6, 9; (19) –2, 7; (20) –3, 15; (21) 1, 5, 9; (22) 3, 5.

13. 
$$\begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$
 14.  $\begin{bmatrix} 1 & -5 \\ -5 & 1 \end{bmatrix}$ 

15. 
$$\begin{bmatrix} 3 & 4 \\ 4 & 9 \end{bmatrix}$$
 16. 
$$\begin{bmatrix} 6 & -2 \\ -2 & 9 \end{bmatrix}$$

7. 
$$\begin{bmatrix} 1 & 1 & 5 \\ 1 & 5 & 1 \\ 5 & 1 & 1 \end{bmatrix}$$
 18. 
$$\begin{bmatrix} 1 & -6 & 4 \\ -6 & 2 & -2 \\ 4 & -2 & -3 \end{bmatrix}$$

$$\begin{bmatrix} -2 & 6 & 2 \\ 4 & 2 & 3 \end{bmatrix} \qquad \textbf{20.} \begin{bmatrix} 8 & 5 & -4 \\ -4 & -4 & -1 \end{bmatrix}$$

1. 
$$\begin{bmatrix} 4 & 3 & 1 & 1 \\ 3 & 4 & 1 & 1 \\ 1 & 1 & 4 & 3 \\ 1 & 1 & 3 & 4 \end{bmatrix}$$
 22. 
$$\begin{bmatrix} 4 & 0 & 1 & 0 \\ 0 & 4 & 0 & 1 \\ 1 & 0 & 4 & 0 \\ 0 & 1 & 0 & 4 \end{bmatrix}$$

23. Let 
$$A = \begin{bmatrix} 4 & -1 & -1 \\ -1 & 4 & -1 \\ -1 & -1 & 4 \end{bmatrix}$$
 and  $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ . Verify that 5 is

an eigenvalue of A and  $\mathbf{v}$  is an eigenvector. Then orthogonally diagonalize A.

24. Let 
$$A = \begin{bmatrix} -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$
,  $\mathbf{v}_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ , and  $\mathbf{v}_2 = \begin{bmatrix} 1 \end{bmatrix}$ 

-1 1 Verify that v<sub>1</sub> and v<sub>2</sub> are eigenvectors of A. Then orthogonally diagonalize A.

In Exercises 25-32, mark each statement True or False (T/F). Justify each answer.

25. (T/F) An  $n \times n$  matrix that is orthogonally diagonalizable

must be symmetric.

26. (T/F) There are symmetric matrices that are not orthogonally diagonalizable.

27. (T/F) An orthogonal matrix is orthogonally diagonalizable.

(T/F) If B = PDP<sup>T</sup>, where P<sup>T</sup> = P<sup>-1</sup> and D is a diagonal matrix, then B is a symmetric matrix.

(T/F) For a nonzero v in R<sup>n</sup>, the matrix vv<sup>T</sup> is called a projection matrix.

30. (T/F) If  $A^T = A$  and if vectors  $\mathbf{u}$  and  $\mathbf{v}$  satisfy  $A\mathbf{u} = 3\mathbf{u}$  and  $A\mathbf{v} = 4\mathbf{v}$ , then  $\mathbf{u} \cdot \mathbf{v} = 0$ .

 (T/F) An n×n symmetric matrix has n distinct real eigenvalues.

32. (T/F) The dimension of an eigenspace of a symmetric matrix is sometimes less than the multiplicity of the corresponding

Show that if A is an n × n symmetric matrix, then (Ax)⋅y = x⋅(Ay) for all x, y in R<sup>n</sup>.

 Suppose A is a symmetric n × n matrix and B is any n × m matrix. Show that B<sup>T</sup>AB, B<sup>T</sup>B, and BB<sup>T</sup> are symmetric matrices.

35. Suppose A is invertible and orthogonally diagonalizable. Explain why  $A^{-1}$  is also orthogonally diagonalizable.

36. Suppose A and B are both orthogonally diagonalizable and AB = BA. Explain why AB is also orthogonally diagonalizable.

37. Let A = PDP<sup>-1</sup>, where P is orthogonal and D is diagonal, and let λ be an eigenvalue of A of multiplicity k. Then λ appears k times on the diagonal of D. Explain why the dimension of the eigenspace for λ is k.

38. Suppose A = PRP<sup>-1</sup>, where P is orthogonal and R is upper triangular. Show that if A is symmetric, then R is symmetric and hence is actually a diagonal matrix.

39. Construct a spectral decomposition of A from Example 2.

40. Construct a spectral decomposition of A from Example 3.
41. Let u be a unit vector in R<sup>n</sup>, and let B = uu<sup>T</sup>.

 Given any x in ℝ<sup>n</sup>, compute Bx and show that Bx is the orthogonal projection of x onto u, as described in Section 6.2.

b. Show that B is a symmetric matrix and  $B^2 = B$ .

c. Show that u is an eigenvector of B. What is the corresponding eigenvalue?

42. Let B be an n × n symmetric matrix such that B² = B. Any such matrix is called a projection matrix (or an orthogonal projection matrix). Given any y in ℝ<sup>n</sup>, let ŷ = By and z = y - ŷ.

a. Show that z is orthogonal to ŷ.

b. Let W be the column space of B. Show that y is the sum of a vector in W and a vector in W<sup>\(\perp\)</sup>. Why does this prove that By is the orthogonal projection of y onto the column space of B?

Orthogonally diagonalize the matrices in Exercises 43-46. To practice the methods of this section, do not use an eigenvector routine from your matrix program. Instead, use the program to find the eigenvalues, and, for each eigenvalue  $\lambda$ , find an orthonormal basis for  $Nu(A \rightarrow AI)$ , as in Examples 2 and 3.

46.  $\begin{bmatrix} 8 & 2 & 2 & -6 & 9 \\ 2 & 8 & 2 & -6 & 9 \\ 2 & 2 & 8 & -6 & 9 \\ -6 & -6 & -6 & 24 & 9 \\ 0 & 9 & 9 & 9 & 9 & 9 \end{bmatrix}$ 

# \*3

Positive definite



Negative definite



Indefinite

### Section 7.2: Quadratic Forms

### Chapter 7: Orthogonality and Least Squares

### Math 1554 Linear Algebra





### Section 7.2: Quadratic Forms

Chapter 7: Orthogonality and Least Squares

Math 1554 Linear Algebra

### Topics and Objectives

#### Topics

- 1. Quadratic forms
- 2. Change of variables
- 3. Principle axes theorem 4. Classifying quadratic forms

### Learning Objectives

- Characterize and classify quadratic forms using eigenvalues and eigenvectors.
   Express quadratic forms in the form Q(Z) = X<sup>T</sup>AX.

- Apply the principle axes theorem to express quadratic forms with no cross-product terms.
- $\begin{tabular}{ll} \textbf{Motivating Question Does this inequality hold for all } $x,y$? \end{tabular}$

### $x^2-6xy+9y^2\geq 0$

### Quadratic Forms



Section 7.2 Stide 362

#### Course Schedule

| We | ek Dates    | Lecture | Studio    | Lecture | Stud |
|----|-------------|---------|-----------|---------|------|
| 1  | 8/21 - 8/25 | 1.1     | WS1.1     | 1.2     | W\$1 |
| 2  | 8/28 - 9/1  | 1.4     | WS1.3,1.4 | 1.5     | W51  |

| 5 | 2.1   | WS1.9,2.1 | Exam 1, |
|---|-------|-----------|---------|
|   | Break | WS1.7     | 1.8     |
|   | 1.4   | WS1.3,1.4 | 1.5     |

W\$3.3,4.9

WS5.3 5.5

WS6.3,6.4 6.4,6.5

WSPapeRank 7.2

WS7.2,7.3

10/2 - 10/6

10/16 - 10/20 5.3

11 10/30 - 11/3 6.4

13 11/13 - 11/17 7.1

2.5















| 16 | 12/4 - 12/8   | Last lecture | Last Studio   | Reading Per    | iod       |          |             |
|----|---------------|--------------|---------------|----------------|-----------|----------|-------------|
| 17 | 12/11 - 12/15 | Final Exams: | MATH 1554 Con | nmon Final Exa | m Tuesday | December | 12th at 6pr |
|    |               |              |               |                |           |          |             |

| 17 | 12/11 - 12/15 | Final Exams | MATH 1554 0 | Common Final E | xam Tuesda | , December | 12th at 6 |
|----|---------------|-------------|-------------|----------------|------------|------------|-----------|
|    |               |             |             |                |            |            |           |
|    |               |             |             |                |            |            |           |
|    |               |             |             |                |            |            |           |

### Compute the quadratic form $\vec{x}^T A \vec{x}$ for the matrices below.

Example 1

 $A = \begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix}, \qquad B = \begin{bmatrix} 4 & 1 \\ 1 & -3 \end{bmatrix}$ 

### Example 1 - Surface Plots The surfaces for Example 1 are shown below.







```
format bank
%% example la
[X,Y]=meshgrid(-2:.1:2);
Z=4.*X:^2+3:*Y.^2;
[X1,Y1,Z1]=cylinder(1);
%s=surf(X,Y,Z,'FaceAlpha',0.5); hold on
%% example 1b
Z=4.*X.^2+2.*X.*Y-3.*Y.^2;
s=surf(X,Y,Z,'FaceAlpha',0.5); hold on
%% example 6
%[X,Y]=meshgrid(-2:.2:2);
Z=X.^2-6.*X.*Y+9.*Y.^2;
s=surf(X,Y,Z,'FaceAlpha',0.5); hold on
[P,D]=eig([1 -3 ; -3 9])
A=P*D*inv(P)
rref(A-10*eye(2))
%% plots cylinder
h=max(Z(:));
z1=z1*h;
%Z1(1,:)=-Z1(2,:);
c=surf(X1,Y1,Z1,'FaceAlpha',0.1); hold
```

%% no errors check

1+1

clc



### Example 2

Write Q in the form  $\vec{x}^T A \vec{x}$  for  $\vec{x} \in \mathbb{R}^3$ 

$$Q(x) = 5x_1^2 - x_2^2 + 3x_3^2 + 6x_1x_3 - 12x_2x_3$$

Change of Variable

If  $\vec{x}$  is a variable vector in  $\mathbb{R}^n$ , then a **change of variable** can be represented as

$$ec{x}=Pec{y}, \quad ext{or} \quad ec{y}=P^{-1}ec{x}$$

With this change of variable, the quadratic form  $\vec{x}^T A \vec{x}$  becomes:

### Example 3

Make a change of variable  $\vec{x} = P\vec{y}$  that transforms  $Q = \vec{x}^T A \vec{x}$  so that it does not have cross terms. The orthogonal decomposition of  $\boldsymbol{A}$  is given.

$$A = \begin{pmatrix} 3 & 2 \\ 2 & 6 \end{pmatrix} = PDP^{T}$$

$$P = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$$

$$D = \begin{pmatrix} 2 & 0 \\ 0 & 7 \end{pmatrix}$$

$$D = \begin{pmatrix} 2 & 0 \\ 0 & 7 \end{pmatrix}$$

### Principle Axes Theorem

Theorem

If A is a matrix then there exists an orthogonal change of variable  $\vec{x} = P \vec{y}$  that transforms  $\vec{x}^T A \vec{x}$  to  $\vec{x}^T D \vec{x}$  with no cross-product terms.

### Example 3

Make a change of variable  $\vec{x} = P\vec{y}$  that transforms  $Q = \vec{x}^T A \vec{x}$  so that it does not have cross terms. The orthogonal decomposition of  $\boldsymbol{A}$  is given.

$$A = \begin{pmatrix} 3 & 2 \\ 2 & 6 \end{pmatrix} = PDP$$

$$P = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$$

$$D = \begin{pmatrix} 2 & 0 \\ 0 & 7 \end{pmatrix}$$

$$D = \begin{pmatrix} 2 & 0 \\ 0 & 7 \end{pmatrix}$$

### Example 5

Compute the quadratic form  $Q=\vec{x}^TA\vec{x}$  for  $A=\begin{pmatrix}5&2\\2&8\end{pmatrix}$  , and find a change of variable that removes the cross-product term. A sketch of  ${\it Q}$  is below. semi-minor axis

semi-major axis



### Classifying Quadratic Forms



- A quadratic form Q is
- 3. positive semidefinite if
- 4. negative semidefinite if \_
- for all  $\vec{x} \neq \vec{0}$ . 1. positive definite if for all  $\vec{x} \neq \vec{0}$ . 2. negative definite if for all  $\vec{x}$ .
- for all  $\vec{x}$ . 5. indefinite if

Quadratic Forms and Eigenvalues

3. indefinite iff  $\lambda_i$ 



### Example 6

We can now return to our motivating question (from first slide): does this inequality hold for all x, y?

$$x^2 - 6xy + 9y^2 \ge 0$$





Negative definite



Indefinite





https://www.geogebra.org/m/c6yg2agh







clc format bank %% example 1a [X,Y]=meshgrid(-2:.1:2); Z=4.\*X.^2+3.\*Y.^2; [X1,Y1,Z1]=cylinder(1); %s=surf(X,Y,Z,'FaceAlpha',0.5); hold on %% example 1b Z=4.\*X.^2+2.\*X.\*Y-3.\*Y.^2; %s=surf(X,Y,Z,'FaceAlpha',0.5); hold on %% example 6 %[X,Y]=meshgrid(-2:.2:2); Z=X.^2-6.\*X.\*Y+9.\*Y.^2; s=surf(X,Y,Z,'FaceAlpha',0.5); hold on [P,D]=eig([1 -3; -3 9]) A=P\*D\*inv(P) rref(A-10\*eye(2)) %% plots cylinder

c=surf(X1,Y1,Z1, 'FaceAlpha',0.1); hold on

h=max(Z(:)); Z1=Z1\*h; %Z1(1,:)=-Z1(2,:);

1+1

%% no errors check



Figure 1

### 7.2 EXERCISES

1. Compute the quadratic form  $\mathbf{x}^T A \mathbf{x}$ , when  $A = \begin{bmatrix} 5 & 1/3 \\ 1/3 & 1 \end{bmatrix}$ 

a. 
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 b.  $\mathbf{x} = \begin{bmatrix} 6 \\ 1 \end{bmatrix}$  c.  $\mathbf{x} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ 

- **2.** Compute the quadratic form  $\mathbf{x}^T A \mathbf{x}$ , for  $A = \begin{bmatrix} 3 & 2 & 0 \\ 2 & 2 & 1 \\ 0 & 1 & 0 \end{bmatrix}$
- **5.** Find the matrix of the quadratic form. Assume  $\mathbf{x}$  is in  $\mathbb{R}^3$ .

a. 
$$3x_1^2 + 2x_2^2 - 5x_3^2 - 6x_1x_2 + 8x_1x_3 - 4x_2x_3$$

b. 
$$6x_1x_2 + 4x_1x_3 - 10x_2x_3$$

- **6.** Find the matrix of the quadratic form. Assume x is in  $\mathbb{R}^3$ .
- a.  $3x_1^2 2x_2^2 + 5x_3^2 + 4x_1x_2 6x_1x_3$
- b.  $4x_2^2 2x_1x_2 + 4x_2x_3$
- 7. Make a change of variable, x = Py, that transforms the quadratic form  $x_1^2 + 10x_1x_2 + x_2^2$  into a quadratic form with no cross-product term. Give P and the new quadratic form.
- 8. Let A be the matrix of the quadratic form

$$9x_1^2 + 7x_2^2 + 11x_3^2 - 8x_1x_2 + 8x_1x_3$$

It can be shown that the eigenvalues of A are 3, 9, and 15. Find an orthogonal matrix P such that the change of variable  $\mathbf{x} = P\mathbf{y}$  transforms  $\mathbf{x}^T A \mathbf{x}$  into a quadratic form with no crossproduct term. Give P and the new quadratic form.

Classify the quadratic forms in Exercises 9-18. Then make a change of variable,  $\mathbf{x} = P\mathbf{y}$ , that transforms the quadratic form into one with no cross-product term. Write the new quadratic form. Construct P using the methods of Section 7.1.

$$9. \ 4x_1^2 - 4x_1x_2 + 4x_2^2$$

**10.** 
$$2x_1^2 + 6x_1x_2 - 6x_2^2$$

11. 
$$2x_1^2 - 4x_1x_2 - x_2^2$$
  
12.  $-x_1^2 - 2x_1x_2 - x_2^2$ 

$$2. -x_1^2 - 2x_1x_2 - x_2^2$$

13. 
$$x_1^2 - 6x_1x_2 + 9x_2^2$$

**14.** 
$$3x_1^2 + 4x_1x_2$$

**15.** [M] 
$$-3x_1^2 - 7x_2^2 - 10x_3^2 - 10x_4^2 + 4x_1x_2 + 4x_1x_3 + 4x_1x_4 + 6x_3x_4$$

- **16.** [M]  $4x_1^2 + 4x_2^2 + 4x_3^2 + 4x_4^2 + 8x_1x_2 + 8x_3x_4 6x_1x_4 +$
- 17. [M]  $11x_1^2 + 11x_2^2 + 11x_3^2 + 11x_4^2 + 16x_1x_2 12x_1x_4 +$  $12x_2x_3 + 16x_3x_4$
- **18.** [M]  $2x_1^2 + 2x_2^2 6x_1x_2 6x_1x_3 6x_1x_4 6x_2x_3 6x_2x_4 - 2x_3x_4$
- 19. What is the largest possible value of the quadratic form  $5x_1^2 + 8x_2^2$  if  $\mathbf{x} = (x_1, x_2)$  and  $\mathbf{x}^T \mathbf{x} = 1$ , that is, if  $x_1^2 + x_2^2 = 1$ ? (Try some examples of **x**.)
- **20.** What is the largest value of the quadratic form  $5x_1^2 3x_2^2$  if  $\mathbf{x}^T\mathbf{x} = 1$ ?

In Exercises 21 and 22, matrices are  $n \times n$  and vectors are in  $\mathbb{R}^n$ . Mark each statement True or False. Justify each answer.

- 21. a. The matrix of a quadratic form is a symmetric matrix.
  - b. A quadratic form has no cross-product terms if and only if the matrix of the quadratic form is a diagonal matrix.
  - c. The principal axes of a quadratic form  $\mathbf{x}^T A \mathbf{x}$  are eigenvectors of A.

$$\mathbf{a}.\,\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad \mathbf{b}.\,\mathbf{x} = \begin{bmatrix} -2 \\ -1 \\ 5 \end{bmatrix} \quad \mathbf{c}.\,\mathbf{x} = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$

- 3. Find the matrix of the quadratic form. Assume x is in  $\mathbb{R}^2$ .
- a.  $3x_1^2 4x_1x_2 + 5x_2^2$  b.  $3x_1^2 + 2x_1x_2$

b. 
$$3x_1^2 + 2x_1x_2$$

- **4.** Find the matrix of the quadratic form. Assume  $\mathbf{x}$  is in  $\mathbb{R}^2$ . a.  $5x_1^2 + 16x_1x_2 - 5x_2^2$ 
  - d. A positive definite quadratic form Q satisfies  $Q(\mathbf{x}) > 0$ for all  $\mathbf{x}$  in  $\mathbb{R}^n$ .
  - e. If the eigenvalues of a symmetric matrix A are all positive, then the quadratic form  $\mathbf{x}^T A \mathbf{x}$  is positive definite.
  - f. A Cholesky factorization of a symmetric matrix A has the form  $A = R^T R$ , for an upper triangular matrix R with positive diagonal entries.
- **22.** a. The expression  $\|\mathbf{x}\|^2$  is not a quadratic form.
  - b. If A is symmetric and P is an orthogonal matrix, then the change of variable  $\mathbf{x} = P\mathbf{y}$  transforms  $\mathbf{x}^T A \mathbf{x}$  into a quadratic form with no cross-product term.
  - c. If A is a  $2 \times 2$  symmetric matrix, then the set of x such that  $\mathbf{x}^T A \mathbf{x} = c$  (for a constant c) corresponds to either a circle, an ellipse, or a hyperbola.
  - d. An indefinite quadratic form is neither positive semidefinite nor negative semidefinite.
  - e. If A is symmetric and the quadratic form  $\mathbf{x}^T A \mathbf{x}$  has only negative values for  $\mathbf{x} \neq \mathbf{0}$ , then the eigenvalues of A are all positive.

Exercises 23 and 24 show how to classify a quadratic form  $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ , when  $A = \begin{bmatrix} a & b \\ b & d \end{bmatrix}$  and det  $A \neq 0$ , without finding the eigenvalues of A

- 23. If  $\lambda_1$  and  $\lambda_2$  are the eigenvalues of A, then the characteristic polynomial of A can be written in two ways:  $det(A - \lambda I)$ and  $(\lambda - \lambda_1)(\lambda - \lambda_2)$ . Use this fact to show that  $\lambda_1 + \lambda_2 =$ a + d (the diagonal entries of A) and  $\lambda_1 \lambda_2 = \det A$ .
- 24. Verify the following statements.
  - a. Q is positive definite if  $\det A > 0$  and a > 0.
  - b. Q is negative definite if  $\det A > 0$  and a < 0.
  - c. Q is indefinite if  $\det A < 0$ .
- **25.** Show that if B is  $m \times n$ , then  $B^TB$  is positive semidefinite; and if B is  $n \times n$  and invertible, then  $B^TB$  is positive definite.
- **26.** Show that if an  $n \times n$  matrix A is positive definite, then there exists a positive definite matrix B such that  $A = B^T B$ . [Hint: Write  $A = PDP^T$ , with  $P^T = P^{-1}$ . Produce a diagonal matrix C such that  $D = C^TC$ , and let  $B = PCP^T$ . Show that B works.]
- 27. Let A and B be symmetric  $n \times n$  matrices whose eigenvalues are all positive. Show that the eigenvalues of A + B are all positive. [Hint: Consider quadratic forms.]
- **28.** Let A be an  $n \times n$  invertible symmetric matrix. Show that if the quadratic form  $\mathbf{x}^T A \mathbf{x}$  is positive definite, then so is the quadratic form  $\mathbf{x}^T A^{-1} \mathbf{x}$ . [Hint: Consider eigenvalues.]

### Section 7.3: Constrained Optimization

#### Chapter 7: Orthogonality and Least Squares



Math 1554 Linear Algebra



| Section 7.3: | Constrained | Optimization |
|--------------|-------------|--------------|
|--------------|-------------|--------------|

Chapter 7: Orthogonality and Least Squares

Math 1554 Linear Algebra

| 14 | 11/20 - 11/24 | 7.3,7.4        | WS7.2,7.3      | Break              | Break                   | Break |
|----|---------------|----------------|----------------|--------------------|-------------------------|-------|
| 15 | 11/27 - 12/1  | 7.4            | WS7.3,7.4      | 7.4                | WS7.4                   | 7.4   |
| 16 | 12/4 - 12/8   | Last lecture   | Last Studio    | Reading Period     |                         |       |
| 17 | 12/11 - 12/15 | Final Fxams: N | MATH 1554 Comm | on Final Fxam Tues | day. December 12th at 6 | inm   |

WS7.1,7.2

7.3

WSPageRank

### Topics and Objectives

#### Topics

Constrained optimization as an eigenvalue problem
 Distance and orthogonality constraints

#### Learning Objectives

1. Apply eigenvalues and eigenvectors to solve optimization problems that are subject to distance and orthogonality constraints.

### Example 1

The surface of a unit sphere in  $\ensuremath{\mathbb{R}}^3$  is given by

 $Q(\vec{x}) = 9x_1^2 + 4x_2^2 + 3x_3^2$ 





Find the largest and smallest values of  ${\cal Q}$  on the surface of the sphere.

11/13 - 11/17 7.1

### Ex. Find the largest output z-value with restricted input ||x||=1 where z is given by:

$$z = 3x_1^2 + 7x_2^2$$



**FIGURE 1**  $z = 3x_1^2 + 7x_2^2$ .



**FIGURE 2** The intersection of  $z = 3x_1^2 + 7x_2^2$  and the cylinder  $x_1^2 + x_2^2 = 1$ .



SOLUTION By Theorem 6, the desired maximum value is the greatest eigenvalue of

 $\mathbf{x}^T\mathbf{x} = 1, \quad \mathbf{x}^T\mathbf{u}_1 = 0$ 

(4)

$$0 = -\lambda^3 + 10\lambda^2 - 27\lambda + 18 = -(\lambda - 6)(\lambda - 3)(\lambda - 1)$$

$$0 = -\lambda^3 + 10\lambda^2 - 27\lambda + 18 = -(\lambda - 6)(\lambda - 3)(\lambda - 1)$$

$$0 = -\lambda^3 + 10\lambda^2 - 27\lambda + 18 = -(\lambda - 6)(\lambda - 3)(\lambda - 1)$$

$$0 = -\lambda^{2} + 10\lambda$$
The greatest eigenvalue is 6.

$$0 = -\lambda^3 + 10.$$
the greatest eigenvalue is 6.

$$0 = -\lambda^3 + 10$$
the greatest eigenvalue is 6.

A. The characteristic equation turns out to be
$$0 = -\lambda^3 + 10\lambda^2 - 27\lambda + 18$$

$$0 = -\lambda^3 + 10$$
ne greatest eigenvalue is 6.

$$0 = -\lambda^3 + 10$$
the greatest eigenvalue is 6.

$$0 = -\lambda^3 + 1$$
the greatest eigenvalue is 6

$$0 = -\lambda^{2} + 10^{2}$$
 e greatest eigenvalue is 6.

- to the conditions
- **EXAMPLE 5** Let A be the matrix in Example 3 and let  $\mathbf{u}_1$  be a unit eigenvector corresponding to the greatest eigenvalue of A. Find the maximum value of  $\mathbf{x}^T A \mathbf{x}$  subject

#### A Constrained Optimization Problem

Suppose we wish to find the maximum or minimum values of

$$Q(\vec{x}) = \vec{x}^{\,T} A \vec{x}$$

subject to

$$||\vec{x}|| = 1$$

That is, we want to find

$$m = \min\{O(\vec{s}) : 1$$

$$m = \min\{Q(\vec{x}) : ||\vec{x}|| = 1\}$$
  
 $M = \max\{Q(\vec{x}) : ||\vec{x}|| = 1\}$ 

This is an example of a **constrained optimization** problem. Note that we may also want to know where these extreme values are obtained.

### Example 2

Calculate the maximum and minimum values of  $Q(\vec{x}) = \vec{x}^T A \vec{x}, \ \vec{x} \in \mathbb{R}^3,$ subject to  $||\vec{x}||=1$ , and identify points where these values are obtained.

$$Q(\vec{x}) = x_1^2 + 2x_2x_3$$

#### Constrained Optimization and Eigenvalues

Theorem

If 
$$Q = \vec{x}^T A \vec{x}$$
,  $A$  is a real  $n \times n$  symmetric matrix, with eigenvalues

$$\lambda_1 \ge \lambda_2 \ldots \ge \lambda_n$$

and associated normalized eigenvectors

$$\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n$$

ien, subject to the constraint 
$$||x|| = 1$$
,

Then, subject to the constraint 
$$||\vec{x}||=1$$
, • the **maximum** value of  $Q(\vec{x})=\lambda_1$ , attained at  $\vec{x}=\pm\,\vec{u}_1.$ 

• the **minimum** value of  $Q(\vec{x}) = \lambda_n$ , attained at  $\vec{x} = \pm \, \vec{u}_n$ .

#### Example 2

The image below is the unit sphere whose surface is colored according to the quadratic from the previous example. Notice the agreement between our solution and the image.



#### An Orthogonality Constraint

Suppose  $Q=\vec{x}^TA\vec{x},\ A$  is a real  $n\times n$  symmetric matrix, with eigenvalues

and associated eigenvectors

 $\lambda_1 \ge \lambda_2 \ldots \ge \lambda_n$ 

$$\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n$$

$$\begin{split} & \text{Subject to the constraints } ||\vec{x}|| = 1 \text{ and } \vec{x} \cdot \vec{u}_1 = 0, \\ & \text{ * The maximum value of } Q(\vec{x}) = \lambda_2, \text{ attained at } \vec{x} = \vec{u}_*. \\ & \text{ * The minimum value of } Q(\vec{x}) = \lambda_n, \text{ attained at } \vec{x} = \vec{u}_n. \end{split}$$
Note that  $\lambda_2$  is the second largest eigenvalue of  $\boldsymbol{A}.$ 

Example 3

Calculate the maximum value of  $Q(\vec{x})=\vec{x}^TA\vec{x},\,\vec{x}\in\mathbb{R}^3$ , subject to  $||\vec{x}||=1$  and to  $\vec{x}\cdot\vec{u}_1=0$ , and identify a point where this maximum is obtained.

$$Q(\vec{x}) = x_1^2 + 2x_2x_3, \qquad \vec{u}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

Section 7.3 Slide 381

Example 4 (if time permits)

Calculate the maximum value of  $Q(\vec{x}) = \vec{x}^T A \vec{x}, \ \vec{x} \in \mathbb{R}^3$ , subject to  $||\vec{x}|| = 5$ , and identify a point where this maximum is obtained.

$$Q(\vec{x})=x_1^2+2x_2x_3$$

### 7.3 EXERCISES

In Exercises 1 and 2, find the change of variable  $\mathbf{x} = P\mathbf{y}$  that transforms the quadratic form  $\mathbf{x}^T A \mathbf{x}$  into  $\mathbf{y}^T D \mathbf{y}$  as shown.

1. 
$$5x_1^2 + 6x_2^2 + 7x_3^2 + 4x_1x_2 - 4x_2x_3 = 9y_1^2 + 6y_2^2 + 3y_3^2$$

**2.** 
$$3x_1^2 + 3x_2^2 + 5x_3^2 + 6x_1x_2 + 2x_1x_3 + 2x_2x_3 = 7y_1^2 + 4y_2^2$$

*Hint*:  $\mathbf{x}$  and  $\mathbf{y}$  must have the same number of coordinates, so the quadratic form shown here must have a coefficient of zero for  $y_3^2$ .

In Exercises 3–6, find (a) the maximum value of  $Q(\mathbf{x})$  subject to the constraint  $\mathbf{x}^T\mathbf{x} = 1$ , (b) a unit vector  $\mathbf{u}$  where this maximum is attained, and (c) the maximum of  $Q(\mathbf{x})$  subject to the constraints  $\mathbf{x}^T\mathbf{x} = 1$  and  $\mathbf{x}^T\mathbf{u} = 0$ .

3. 
$$Q(\mathbf{x}) = 5x_1^2 + 6x_2^2 + 7x_3^2 + 4x_1x_2 - 4x_2x_3$$
  
(See Exercise 1.)

#### 416 CHAPTER 7 Symmetric Matrices and Quadratic Forms

- **4.**  $Q(\mathbf{x}) = 3x_1^2 + 3x_2^2 + 5x_3^2 + 6x_1x_2 + 2x_1x_3 + 2x_2x_3$  (See Exercise 2.)
- 5.  $Q(\mathbf{x}) = x_1^2 + x_2^2 10x_1x_2$
- **6.**  $Q(\mathbf{x}) = 3x_1^2 + 9x_2^2 + 8x_1x_2$
- 7. Let  $Q(\mathbf{x}) = -2x_1^2 x_2^2 + 4x_1x_2 + 4x_2x_3$ . Find a unit vector  $\mathbf{x}$  in  $\mathbb{R}^3$  at which  $Q(\mathbf{x})$  is maximized, subject to  $\mathbf{x}^T\mathbf{x} = 1$ . [Hint: The eigenvalues of the matrix of the quadratic form Q are 2, -1, and -4.]
- 8. Let  $Q(\mathbf{x}) = 7x_1^2 + x_2^2 + 7x_3^2 8x_1x_2 4x_1x_3 8x_2x_3$ . Find a unit vector  $\mathbf{x}$  in  $\mathbb{R}^3$  at which  $Q(\mathbf{x})$  is maximized, subject to  $\mathbf{x}^2 = 1$ . [Hint: The eigenvalues of the matrix of the quadratic form Q are 9 and -3.]
- 9. Find the maximum value of  $Q(\mathbf{x}) = 7x_1^2 + 3x_2^2 2x_1x_2$ , subject to the constraint  $x_1^2 + x_2^2 = 1$ . (Do not go on to find a vector where the maximum is attained.)
- 10. Find the maximum value of  $Q(\mathbf{x}) = -3x_1^2 + 5x_2^2 2x_1x_2$ , subject to the constraint  $x_1^2 + x_2^2 = 1$ . (Do not go on to find a vector where the maximum is attained.)
- 11. Suppose x is a unit eigenvector of a matrix A corresponding to an eigenvalue 3. What is the value of x<sup>T</sup>Ax?

- 12. Let  $\lambda$  be any eigenvalue of a symmetric matrix A. Justify the statement made in this section that  $m \le \lambda \le M$ , where m and M are defined as in (2). [Hint: Find an x such that  $\lambda = x^T A x$ .]
- 13. Let A be an  $n \times n$  symmetric matrix, let M and m denote the maximum and minimum values of the quadratic form  $\mathbf{x}^T A \mathbf{x}$ , where  $\mathbf{x}^T \mathbf{x} = \mathbf{1}$ , and denote corresponding unit eigenvectors by  $\mathbf{u}_1$  and  $\mathbf{u}_n$ . The following calculations show that given any number t between M and m, there is a unit vector  $\mathbf{x}$  such that  $t = \mathbf{x}^T A \mathbf{x}$ . Verify that  $t = (1 \alpha)m + \alpha M$  for some number  $\alpha$  between 0 and 1. Then let  $\mathbf{x} = \sqrt{1 \alpha} \mathbf{u}_n + \sqrt{\alpha} \mathbf{u}_1$ , and show that  $\mathbf{x}^T \mathbf{x} = 1$  and  $\mathbf{x}^T A \mathbf{x} = t$ .
- $[\mbox{\bf M}]$  In Exercises 14–17, follow the instructions given for Exercises 3–6.
- **14.**  $3x_1x_2 + 5x_1x_3 + 7x_1x_4 + 7x_2x_3 + 5x_2x_4 + 3x_3x_4$
- **15.**  $4x_1^2 6x_1x_2 10x_1x_3 10x_1x_4 6x_2x_3 6x_2x_4 2x_3x_4$
- **16.**  $-6x_1^2 10x_2^2 13x_3^2 13x_4^2 4x_1x_2 4x_1x_3 4x_1x_4 + 6x_3x_4$
- 17.  $x_1x_2 + 3x_1x_3 + 30x_1x_4 + 30x_2x_3 + 3x_2x_4 + x_3x_4$