ALGEBRAS Meele 1. E

### 7.1 Exercises

Determine which of the matrices in Exercises 1-6 are symmetric.

1. 
$$\begin{bmatrix} 3 & 5 \\ 5 & -7 \end{bmatrix}$$
 2. 
$$\begin{bmatrix} 3 & -5 \\ -5 & -3 \end{bmatrix}$$

5. 
$$\begin{bmatrix} -6 & 2 & 0 \\ 2 & -6 & 2 \\ 2 & 6 & 2 \\ \end{bmatrix}$$
 6.  $\begin{bmatrix} 1 & 2 & 2 & 1 \\ 2 & 2 & 2 & 1 \\ 2 & 2 & 2 & 1 \\ \end{bmatrix}$ 

Determine which of the matrices in Exercises 7–12 are orthogonal. If orthogonal, find the inverse.

7. 
$$\begin{bmatrix} .6 & .8 \\ .8 & -.6 \end{bmatrix}$$
 8.  $\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$  9.  $\begin{bmatrix} -4/5 & 3/5 \\ 3/5 & 4/5 \end{bmatrix}$  10.  $\begin{bmatrix} 1/3 & 2/3 & 2/3 \\ 2/3 & 1/3 & -2/3 \\ 2/3 & -2/3 & 1/3 \end{bmatrix}$ 

Orthogonally diagonalize the matrices in Exercises 13–22, giving an orthogonal matrix P and a diagonal matrix D. To save

you time, the eigenvalues in Exercises 17–22 are the following: (17) –4, 4, 7; (18) –3, –6, 9; (19) –2, 7; (20) –3, 15; (21) 1, 5, 9; (22) 3, 5.

13. 
$$\begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$
 14.  $\begin{bmatrix} 1 & -5 \\ -5 & 1 \end{bmatrix}$ 

15. 
$$\begin{bmatrix} 3 & 4 \\ 4 & 9 \end{bmatrix}$$
 16. 
$$\begin{bmatrix} 6 & -2 \\ -2 & 9 \end{bmatrix}$$

7. 
$$\begin{bmatrix} 1 & 1 & 5 \\ 1 & 5 & 1 \\ 5 & 1 & 1 \end{bmatrix}$$
 18. 
$$\begin{bmatrix} 1 & -6 & 4 \\ -6 & 2 & -2 \\ 4 & -2 & -3 \end{bmatrix}$$

$$\begin{bmatrix} -2 & 6 & 2 \\ 4 & 2 & 3 \end{bmatrix} \qquad \textbf{20.} \begin{bmatrix} 8 & 5 & -4 \\ -4 & -4 & -1 \end{bmatrix}$$

1. 
$$\begin{bmatrix} 4 & 3 & 1 & 1 \\ 3 & 4 & 1 & 1 \\ 1 & 1 & 4 & 3 \\ 1 & 1 & 3 & 4 \end{bmatrix}$$
 22. 
$$\begin{bmatrix} 4 & 0 & 1 & 0 \\ 0 & 4 & 0 & 1 \\ 1 & 0 & 4 & 0 \\ 0 & 1 & 0 & 4 \end{bmatrix}$$

23. Let 
$$A = \begin{bmatrix} 4 & -1 & -1 \\ -1 & 4 & -1 \\ -1 & -1 & 4 \end{bmatrix}$$
 and  $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ . Verify that 5 is

an eigenvalue of A and  $\mathbf{v}$  is an eigenvector. Then orthogonally diagonalize A.

24. Let 
$$A = \begin{bmatrix} -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$
,  $\mathbf{v}_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ , and  $\mathbf{v}_2 = \begin{bmatrix} 1 \end{bmatrix}$ 

-1 1 Verify that v<sub>1</sub> and v<sub>2</sub> are eigenvectors of A. Then orthogonally diagonalize A.

In Exercises 25-32, mark each statement True or False (T/F). Justify each answer.

25. (T/F) An  $n \times n$  matrix that is orthogonally diagonalizable

must be symmetric.

26. (T/F) There are symmetric matrices that are not orthogonally diagonalizable.

27. (T/F) An orthogonal matrix is orthogonally diagonalizable.

(T/F) If B = PDP<sup>T</sup>, where P<sup>T</sup> = P<sup>-1</sup> and D is a diagonal matrix, then B is a symmetric matrix.

(T/F) For a nonzero v in R<sup>n</sup>, the matrix vv<sup>T</sup> is called a projection matrix.

30. (T/F) If  $A^T = A$  and if vectors  $\mathbf{u}$  and  $\mathbf{v}$  satisfy  $A\mathbf{u} = 3\mathbf{u}$  and  $A\mathbf{v} = 4\mathbf{v}$ , then  $\mathbf{u} \cdot \mathbf{v} = 0$ .

 (T/F) An n×n symmetric matrix has n distinct real eigenvalues.

32. (T/F) The dimension of an eigenspace of a symmetric matrix is sometimes less than the multiplicity of the corresponding

Show that if A is an n × n symmetric matrix, then (Ax)⋅y = x⋅(Ay) for all x, y in R<sup>n</sup>.

 Suppose A is a symmetric n × n matrix and B is any n × m matrix. Show that B<sup>T</sup>AB, B<sup>T</sup>B, and BB<sup>T</sup> are symmetric matrices.

35. Suppose A is invertible and orthogonally diagonalizable. Explain why  $A^{-1}$  is also orthogonally diagonalizable.

36. Suppose A and B are both orthogonally diagonalizable and AB = BA. Explain why AB is also orthogonally diagonalizable.

37. Let A = PDP<sup>-1</sup>, where P is orthogonal and D is diagonal, and let λ be an eigenvalue of A of multiplicity k. Then λ appears k times on the diagonal of D. Explain why the dimension of the eigenspace for λ is k.

38. Suppose A = PRP<sup>-1</sup>, where P is orthogonal and R is upper triangular. Show that if A is symmetric, then R is symmetric and hence is actually a diagonal matrix.

39. Construct a spectral decomposition of A from Example 2.

40. Construct a spectral decomposition of A from Example 3.
41. Let u be a unit vector in R<sup>n</sup>, and let B = uu<sup>T</sup>.

 Given any x in ℝ<sup>n</sup>, compute Bx and show that Bx is the orthogonal projection of x onto u, as described in Section 6.2.

b. Show that B is a symmetric matrix and  $B^2 = B$ .

c. Show that u is an eigenvector of B. What is the corresponding eigenvalue?

42. Let B be an n × n symmetric matrix such that B² = B. Any such matrix is called a projection matrix (or an orthogonal projection matrix). Given any y in ℝ<sup>n</sup>, let ŷ = By and z = y - ŷ.

a. Show that z is orthogonal to ŷ.

b. Let W be the column space of B. Show that y is the sum of a vector in W and a vector in W<sup>\(\perp\)</sup>. Why does this prove that By is the orthogonal projection of y onto the column space of B?

Orthogonally diagonalize the matrices in Exercises 43-46. To practice the methods of this section, do not use an eigenvector routine from your matrix program. Instead, use the program to find the eigenvalues, and, for each eigenvalue  $\lambda$ , find an orthonormal basis for  $Nu(A \rightarrow AI)$ , as in Examples 2 and 3.

46.  $\begin{bmatrix} 8 & 2 & 2 & -6 & 9 \\ 2 & 8 & 2 & -6 & 9 \\ 2 & 2 & 8 & -6 & 9 \\ -6 & -6 & -6 & 24 & 9 \\ 0 & 9 & 9 & 9 & 9 & 9 \end{bmatrix}$ 

# 7.2 EXERCISES

1. Compute the quadratic form  $\mathbf{x}^T A \mathbf{x}$ , when  $A = \begin{bmatrix} 5 & 1/3 \\ 1/3 & 1 \end{bmatrix}$ 

a. 
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 b.  $\mathbf{x} = \begin{bmatrix} 6 \\ 1 \end{bmatrix}$  c.  $\mathbf{x} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ 

- **2.** Compute the quadratic form  $\mathbf{x}^T A \mathbf{x}$ , for  $A = \begin{bmatrix} 3 & 2 & 0 \\ 2 & 2 & 1 \\ 0 & 1 & 0 \end{bmatrix}$
- **5.** Find the matrix of the quadratic form. Assume  $\mathbf{x}$  is in  $\mathbb{R}^3$ .

a. 
$$3x_1^2 + 2x_2^2 - 5x_3^2 - 6x_1x_2 + 8x_1x_3 - 4x_2x_3$$

b. 
$$6x_1x_2 + 4x_1x_3 - 10x_2x_3$$

- **6.** Find the matrix of the quadratic form. Assume  $\mathbf{x}$  is in  $\mathbb{R}^3$ .
- a.  $3x_1^2 2x_2^2 + 5x_3^2 + 4x_1x_2 6x_1x_3$ 
  - b.  $4x_2^2 2x_1x_2 + 4x_2x_3$
- 7. Make a change of variable, x = Py, that transforms the quadratic form  $x_1^2 + 10x_1x_2 + x_2^2$  into a quadratic form with no cross-product term. Give P and the new quadratic form.
- 8. Let A be the matrix of the quadratic form

$$9x_1^2 + 7x_2^2 + 11x_3^2 - 8x_1x_2 + 8x_1x_3$$

It can be shown that the eigenvalues of A are 3, 9, and 15. Find an orthogonal matrix P such that the change of variable  $\mathbf{x} = P\mathbf{y}$  transforms  $\mathbf{x}^T A \mathbf{x}$  into a quadratic form with no crossproduct term. Give P and the new quadratic form.

Classify the quadratic forms in Exercises 9-18. Then make a change of variable,  $\mathbf{x} = P\mathbf{y}$ , that transforms the quadratic form into one with no cross-product term. Write the new quadratic form. Construct P using the methods of Section 7.1.

$$9. \ 4x_1^2 - 4x_1x_2 + 4x_2^2$$

**10.** 
$$2x_1^2 + 6x_1x_2 - 6x_2^2$$

11. 
$$2x_1^2 - 4x_1x_2 - x_2^2$$
  
12.  $-x_1^2 - 2x_1x_2 - x_2^2$ 

$$2. -x_1^2 - 2x_1x_2 - x_2^2$$

13. 
$$x_1^2 - 6x_1x_2 + 9x_2^2$$

**14.** 
$$3x_1^2 + 4x_1x_2$$
  
-  $10x_1^2 + 4x_1x_2 + 4x_1x_3 + 4x_1x_4$ 

**15.** [M] 
$$-3x_1^2 - 7x_2^2 - 10x_3^2 - 10x_4^2 + 4x_1x_2 + 4x_1x_3 + 4x_1x_4 + 6x_3x_4$$

**16.** [M] 
$$4x_1^2 + 4x_2^2 + 4x_3^2 + 4x_4^2 + 8x_1x_2 + 8x_3x_4 - 6x_1x_4 + 6x_2x_3$$

17. [M] 
$$11x_1^2 + 11x_2^2 + 11x_3^2 + 11x_4^2 + 16x_1x_2 - 12x_1x_4 + 12x_2x_3 + 16x_3x_4$$

**18.** [M] 
$$2x_1^2 + 2x_2^2 - 6x_1x_2 - 6x_1x_3 - 6x_1x_4 - 6x_2x_3 - 6x_2x_4 - 2x_3x_4$$

**19.** What is the largest possible value of the quadratic form 
$$5x_1^2 + 8x_2^2$$
 if  $\mathbf{x} = (x_1, x_2)$  and  $\mathbf{x}^T\mathbf{x} = 1$ , that is, if  $x_1^2 + x_2^2 = 1$ ? (Try some examples of  $\mathbf{x}$ .)

**20.** What is the largest value of the quadratic form  $5x_1^2 - 3x_2^2$  if  $\mathbf{x}^T\mathbf{x} = 1$ ?

In Exercises 21 and 22, matrices are  $n \times n$  and vectors are in  $\mathbb{R}^n$ . Mark each statement True or False. Justify each answer.

- 21. a. The matrix of a quadratic form is a symmetric matrix.
  - b. A quadratic form has no cross-product terms if and only if the matrix of the quadratic form is a diagonal matrix.
  - c. The principal axes of a quadratic form  $\mathbf{x}^T A \mathbf{x}$  are eigenvectors of A.

$$\mathbf{a}.\,\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad \mathbf{b}.\,\mathbf{x} = \begin{bmatrix} -2 \\ -1 \\ 5 \end{bmatrix} \quad \mathbf{c}.\,\mathbf{x} = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$

3. Find the matrix of the quadratic form. Assume x is in  $\mathbb{R}^2$ .

a. 
$$3x_1^2 - 4x_1x_2 + 5x_2^2$$
 b.  $3x_1^2 + 2x_1x_2$ 

b. 
$$3x_1^2 + 2x_1x_2$$

- d. A positive definite quadratic form Q satisfies  $Q(\mathbf{x}) > 0$ for all  $\mathbf{x}$  in  $\mathbb{R}^n$ .
- e. If the eigenvalues of a symmetric matrix A are all positive, then the quadratic form  $\mathbf{x}^T A \mathbf{x}$  is positive definite.
- f. A Cholesky factorization of a symmetric matrix A has the form  $A = R^T R$ , for an upper triangular matrix R with positive diagonal entries.
- **22.** a. The expression  $\|\mathbf{x}\|^2$  is not a quadratic form.
  - b. If A is symmetric and P is an orthogonal matrix, then the change of variable  $\mathbf{x} = P\mathbf{y}$  transforms  $\mathbf{x}^T A \mathbf{x}$  into a quadratic form with no cross-product term.
  - c. If A is a  $2 \times 2$  symmetric matrix, then the set of x such that  $\mathbf{x}^T A \mathbf{x} = c$  (for a constant c) corresponds to either a circle, an ellipse, or a hyperbola.
  - d. An indefinite quadratic form is neither positive semidefinite nor negative semidefinite.
  - e. If A is symmetric and the quadratic form  $\mathbf{x}^T A \mathbf{x}$  has only negative values for  $\mathbf{x} \neq \mathbf{0}$ , then the eigenvalues of A are all positive.

Exercises 23 and 24 show how to classify a quadratic form  $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ , when  $A = \begin{bmatrix} a & b \\ b & d \end{bmatrix}$  and det  $A \neq 0$ , without finding the eigenvalues of A

- 23. If  $\lambda_1$  and  $\lambda_2$  are the eigenvalues of A, then the characteristic polynomial of A can be written in two ways:  $det(A - \lambda I)$ and  $(\lambda - \lambda_1)(\lambda - \lambda_2)$ . Use this fact to show that  $\lambda_1 + \lambda_2 =$ a + d (the diagonal entries of A) and  $\lambda_1 \lambda_2 = \det A$ .
- 24. Verify the following statements.
  - a. Q is positive definite if  $\det A > 0$  and a > 0.
  - b. Q is negative definite if  $\det A > 0$  and a < 0.
  - c. Q is indefinite if  $\det A < 0$ .
- **25.** Show that if B is  $m \times n$ , then  $B^TB$  is positive semidefinite; and if B is  $n \times n$  and invertible, then  $B^TB$  is positive definite.
- **26.** Show that if an  $n \times n$  matrix A is positive definite, then there exists a positive definite matrix B such that  $A = B^T B$ . [Hint: Write  $A = PDP^T$ , with  $P^T = P^{-1}$ . Produce a diagonal matrix C such that  $D = C^TC$ , and let  $B = PCP^T$ . Show that B works.]
- 27. Let A and B be symmetric  $n \times n$  matrices whose eigenvalues are all positive. Show that the eigenvalues of A + B are all positive. [Hint: Consider quadratic forms.]
- **28.** Let A be an  $n \times n$  invertible symmetric matrix. Show that if the quadratic form  $\mathbf{x}^T A \mathbf{x}$  is positive definite, then so is the quadratic form  $\mathbf{x}^T A^{-1} \mathbf{x}$ . [Hint: Consider eigenvalues.]

# 7.3 EXERCISES

In Exercises 1 and 2, find the change of variable  $\mathbf{x} = P\mathbf{y}$  that transforms the quadratic form  $\mathbf{x}^T A \mathbf{x}$  into  $\mathbf{y}^T D \mathbf{y}$  as shown.

1. 
$$5x_1^2 + 6x_2^2 + 7x_3^2 + 4x_1x_2 - 4x_2x_3 = 9y_1^2 + 6y_2^2 + 3y_3^2$$

**2.** 
$$3x_1^2 + 3x_2^2 + 5x_3^2 + 6x_1x_2 + 2x_1x_3 + 2x_2x_3 = 7y_1^2 + 4y_2^2$$

*Hint*:  $\mathbf{x}$  and  $\mathbf{y}$  must have the same number of coordinates, so the quadratic form shown here must have a coefficient of zero for  $y_3^2$ .

In Exercises 3–6, find (a) the maximum value of  $Q(\mathbf{x})$  subject to the constraint  $\mathbf{x}^T\mathbf{x} = 1$ , (b) a unit vector  $\mathbf{u}$  where this maximum is attained, and (c) the maximum of  $Q(\mathbf{x})$  subject to the constraints  $\mathbf{x}^T\mathbf{x} = 1$  and  $\mathbf{x}^T\mathbf{u} = 0$ .

3. 
$$Q(\mathbf{x}) = 5x_1^2 + 6x_2^2 + 7x_3^2 + 4x_1x_2 - 4x_2x_3$$
  
(See Exercise 1.)

#### 416 CHAPTER 7 Symmetric Matrices and Quadratic Forms

- **4.**  $Q(\mathbf{x}) = 3x_1^2 + 3x_2^2 + 5x_3^2 + 6x_1x_2 + 2x_1x_3 + 2x_2x_3$  (See Exercise 2.)
- 5.  $Q(\mathbf{x}) = x_1^2 + x_2^2 10x_1x_2$
- **6.**  $Q(\mathbf{x}) = 3x_1^2 + 9x_2^2 + 8x_1x_2$
- 7. Let  $Q(\mathbf{x}) = -2x_1^2 x_2^2 + 4x_1x_2 + 4x_2x_3$ . Find a unit vector  $\mathbf{x}$  in  $\mathbb{R}^3$  at which  $Q(\mathbf{x})$  is maximized, subject to  $\mathbf{x}^T\mathbf{x} = 1$ . [Hint: The eigenvalues of the matrix of the quadratic form Q are 2, -1, and -4.]
- 8. Let  $Q(\mathbf{x}) = 7x_1^2 + x_2^2 + 7x_3^2 8x_1x_2 4x_1x_3 8x_2x_3$ . Find a unit vector  $\mathbf{x}$  in  $\mathbb{R}^3$  at which  $Q(\mathbf{x})$  is maximized, subject to  $\mathbf{x}^{\mathbf{x}} = 1$ . [Hint: The eigenvalues of the matrix of the quadratic form Q are 9 and -3.]
- 9. Find the maximum value of  $Q(\mathbf{x}) = 7x_1^2 + 3x_2^2 2x_1x_2$ , subject to the constraint  $x_1^2 + x_2^2 = 1$ . (Do not go on to find a vector where the maximum is attained.)
- 10. Find the maximum value of  $Q(\mathbf{x}) = -3x_1^2 + 5x_2^2 2x_1x_2$ , subject to the constraint  $x_1^2 + x_2^2 = 1$ . (Do not go on to find a vector where the maximum is attained.)
- 11. Suppose x is a unit eigenvector of a matrix A corresponding to an eigenvalue 3. What is the value of x<sup>T</sup>Ax?

- 12. Let  $\lambda$  be any eigenvalue of a symmetric matrix A. Justify the statement made in this section that  $m \le \lambda \le M$ , where m and M are defined as in (2). [Hint: Find an x such that  $\lambda = x^T A x$ .]
- 13. Let A be an  $n \times n$  symmetric matrix, let M and m denote the maximum and minimum values of the quadratic form  $\mathbf{x}^T A \mathbf{x}$ , where  $\mathbf{x}^T \mathbf{x} = \mathbf{1}$ , and denote corresponding unit eigenvectors by  $\mathbf{u}_1$  and  $\mathbf{u}_n$ . The following calculations show that given any number t between M and m, there is a unit vector  $\mathbf{x}$  such that  $t = \mathbf{x}^T A \mathbf{x}$ . Verify that  $t = (1 \alpha)m + \alpha M$  for some number  $\alpha$  between 0 and 1. Then let  $\mathbf{x} = \sqrt{1 \alpha} \mathbf{u}_n + \sqrt{\alpha} \mathbf{u}_1$ , and show that  $\mathbf{x}^T \mathbf{x} = 1$  and  $\mathbf{x}^T A \mathbf{x} = t$ .
- $[\mbox{\bf M}]$  In Exercises 14–17, follow the instructions given for Exercises 3–6.
- **14.**  $3x_1x_2 + 5x_1x_3 + 7x_1x_4 + 7x_2x_3 + 5x_2x_4 + 3x_3x_4$
- **15.**  $4x_1^2 6x_1x_2 10x_1x_3 10x_1x_4 6x_2x_3 6x_2x_4 2x_3x_4$
- **16.**  $-6x_1^2 10x_2^2 13x_3^2 13x_4^2 4x_1x_2 4x_1x_3 4x_1x_4 + 6x_3x_4$
- 17.  $x_1x_2 + 3x_1x_3 + 30x_1x_4 + 30x_2x_3 + 3x_2x_4 + x_3x_4$

| Exam 1    |   |         |   |           |     | Eva   | m 2 |           | Exam 3 |    |       |       |                 | O ● 0 Authors ● □ ○ □ □ > > ○ □ □ □ □ □ □ □ □ □ □ □ □ □ |                       |                       |            |                                               |                                                   |                              |                    |        |          |  |
|-----------|---|---------|---|-----------|-----|-------|-----|-----------|--------|----|-------|-------|-----------------|---------------------------------------------------------|-----------------------|-----------------------|------------|-----------------------------------------------|---------------------------------------------------|------------------------------|--------------------|--------|----------|--|
| Out of 50 |   |         |   |           |     |       |     |           |        |    |       |       | A Out Collect   |                                                         | as Data R             |                       |            |                                               | m === c                                           | m m m                        | _ Σ AutoSum + /    |        |          |  |
|           |   |         |   | Out of 50 |     |       |     | Out of 50 |        |    |       | Pools |                 |                                                         |                       |                       |            | ntar v \$ v % 9 1/2 -22 Conditional Formating | Formet Cell I                                     | nsert Delete Form            | Time v 4           |        |          |  |
|           |   |         |   |           |     |       |     |           |        |    |       |       |                 |                                                         | \$ × v fs             |                       | -          |                                               |                                                   | Formatting                   | as Table - Dyles - |        | C CHAP V |  |
|           |   | 30      |   |           |     |       | 2   | 6         |        |    | 17    | ,     |                 |                                                         | A                     | В                     | С          | D                                             | E                                                 | F                            | G I                | H I    |          |  |
|           |   | 30      |   |           |     |       |     | .0        |        |    | 1/    |       |                 | 1 /                                                     | Assignment            | Grade (%) W           | eight P    | oints                                         |                                                   |                              |                    |        |          |  |
|           |   |         |   |           | _   |       |     |           |        |    |       |       |                 |                                                         | xam (Best)            | 60.0                  | 0.2        | 12.00                                         |                                                   | Exam 1                       | 30 /5              | 0      |          |  |
|           |   |         |   |           |     |       |     |           |        |    |       |       |                 |                                                         | xam (Mid)             | 52.0                  | 0.2        | 10.40                                         |                                                   | Exam 2                       |                    |        |          |  |
|           |   |         |   |           |     |       |     |           |        |    |       |       |                 |                                                         | xam (Lowest)          | 34.0                  | 0.15       | 5.10                                          |                                                   | Exam 3                       | 17 /5              | 0      |          |  |
|           |   |         |   |           |     |       |     |           |        |    |       |       |                 |                                                         | AQE Score             | 100.0                 | 0.25       | 25.00                                         |                                                   |                              |                    |        |          |  |
|           |   |         |   |           |     |       |     |           |        |    |       |       |                 | 6 F                                                     | inal Exam             | 50.66667<br>al Grade: | 0.2        | 10.13<br>62.63                                |                                                   | Final Exam                   | 48.67 /1           | 00     |          |  |
|           |   |         |   |           |     |       |     |           |        |    |       |       |                 | . /                                                     |                       | etter Grade:          |            | D D                                           |                                                   | In-studio Quiz Total         | 9 /4               |        |          |  |
|           |   |         |   |           |     |       |     |           |        |    |       |       |                 | 9                                                       | rinai                 | .etter Grade:         | _          | U                                             |                                                   | MyLab Total                  |                    |        |          |  |
|           |   |         |   |           |     |       |     |           |        |    |       |       |                 | 10                                                      |                       |                       |            |                                               |                                                   | Total Exploration Points     |                    |        |          |  |
|           |   |         |   |           |     |       |     |           |        |    |       |       |                 | 11                                                      |                       |                       |            |                                               |                                                   | . our exproration rounts     | 13/4               | -      |          |  |
|           |   |         |   |           |     |       |     |           |        |    |       |       |                 | 12                                                      |                       |                       |            |                                               |                                                   | MQE Total                    | 70                 |        |          |  |
|           |   |         |   |           |     |       |     |           |        |    |       |       |                 | 13                                                      |                       |                       |            |                                               |                                                   | MQE Score                    | 70 /7              | 0      |          |  |
|           |   |         |   |           |     |       |     |           |        |    |       |       |                 | 14                                                      |                       |                       |            |                                               |                                                   | MQE additional               | 0                  |        |          |  |
|           |   |         |   |           |     |       |     |           |        |    |       |       |                 | 15                                                      |                       |                       |            |                                               |                                                   |                              |                    |        |          |  |
|           |   |         |   |           |     |       |     |           |        |    |       |       |                 | 16                                                      |                       |                       |            |                                               | Final Exa                                         | m 2% Bonus? (CIOS incentive) |                    |        |          |  |
|           |   |         |   |           |     |       |     |           |        |    |       |       |                 | - 17                                                    |                       |                       |            |                                               |                                                   | MQE Bonus                    |                    |        |          |  |
|           |   |         |   |           |     |       |     |           |        |    |       |       |                 | 18                                                      |                       |                       |            |                                               |                                                   | Total Final Exam Bonus       | 2                  |        |          |  |
|           |   |         |   |           |     |       |     |           |        |    |       |       |                 | 19                                                      |                       |                       |            |                                               |                                                   |                              |                    |        |          |  |
|           |   |         |   |           |     |       |     |           |        |    |       |       |                 | 21                                                      |                       |                       |            |                                               |                                                   |                              |                    |        |          |  |
|           |   |         |   |           |     |       |     |           |        |    |       |       |                 | 22                                                      |                       |                       |            |                                               |                                                   |                              |                    |        |          |  |
|           |   |         |   |           |     |       |     |           |        |    |       |       |                 | < >                                                     |                       | Shoet1 +              |            |                                               |                                                   |                              |                    |        |          |  |
|           |   |         |   |           |     |       |     |           |        |    |       |       |                 | Stad                                                    | C Accessibility: Inve | rticate               |            |                                               |                                                   |                              |                    |        |          |  |
|           |   |         |   |           |     |       |     |           |        |    |       |       |                 |                                                         |                       |                       |            |                                               |                                                   |                              |                    |        |          |  |
|           |   |         |   |           |     |       |     |           |        |    |       |       |                 |                                                         |                       |                       |            |                                               |                                                   |                              |                    |        |          |  |
|           |   |         |   |           |     |       |     |           |        |    |       |       |                 |                                                         |                       |                       |            |                                               |                                                   |                              |                    |        |          |  |
|           |   |         |   |           |     |       |     |           |        |    |       |       |                 |                                                         |                       |                       |            |                                               |                                                   |                              |                    |        |          |  |
|           |   |         |   |           |     |       |     |           |        |    |       |       |                 |                                                         |                       |                       |            |                                               |                                                   |                              |                    |        |          |  |
|           |   |         |   |           |     |       |     |           |        |    |       |       |                 |                                                         |                       |                       |            |                                               |                                                   |                              |                    |        |          |  |
|           |   |         |   |           |     |       |     |           |        |    |       |       |                 |                                                         |                       |                       |            |                                               |                                                   |                              |                    |        |          |  |
|           |   |         |   |           |     |       |     |           |        |    |       |       |                 |                                                         |                       |                       |            |                                               |                                                   |                              |                    |        |          |  |
|           |   |         |   |           |     |       |     |           |        |    |       |       |                 |                                                         |                       |                       |            |                                               |                                                   |                              |                    |        |          |  |
|           |   |         |   |           |     |       |     |           |        |    |       |       |                 |                                                         |                       |                       |            |                                               |                                                   |                              |                    |        |          |  |
|           |   |         |   |           |     |       |     |           |        |    |       |       |                 |                                                         |                       |                       |            |                                               |                                                   |                              |                    |        |          |  |
|           |   |         |   |           |     |       |     |           |        |    |       |       |                 |                                                         |                       |                       |            |                                               |                                                   |                              |                    |        |          |  |
|           |   |         |   |           |     |       |     |           |        |    |       |       |                 |                                                         |                       |                       |            |                                               |                                                   |                              |                    |        |          |  |
|           |   |         |   |           |     |       |     |           |        |    |       |       |                 |                                                         | O O AutoSav           | • 🚥 ର ବ ନ             | 7.0-       | _                                             | _                                                 | @ grade_calou                | ator ~             | _      | _        |  |
|           |   | Г       | 4 |           |     |       | Г   | - 0       |        |    | Г     | - 0   |                 |                                                         |                       | vow Page Layout       | Formulas E | ata Review                                    | View Develope                                     | r Acrobat 🖓 Tellime          |                    |        |          |  |
|           |   | Exam    | 1 |           |     |       | EX  | am 2      |        |    | Exan  | ทง    |                 |                                                         | Dh Ceov -             |                       | - 12 - A'  |                                               | D- 3                                              |                              | <b>■・</b> • • • •  |        | Σ An     |  |
| Out of 50 |   |         |   |           | Out | of 50 |     | Out of 50 |        |    |       |       | Pasto of Permat | 8 / U +   E                                             | ·   <u> </u>          | F = =                 | E = 101    | Marga & Carron v S v % 9 1 12 23              | Conditional Format Co<br>formatting as Table Styl | I Insert Del                 | de Formati 🗳 Cles  |        |          |  |
|           | 0 | ut OI 3 | · |           |     |       | Out | 01 30     |        |    | Out 0 | 1 30  |                 |                                                         | 65 ‡ × √              |                       |            |                                               |                                                   |                              |                    |        |          |  |
|           |   |         |   |           |     |       |     |           |        |    |       |       |                 |                                                         | A                     | В                     | C          | D                                             | E                                                 | F                            | G                  | Н      | 1        |  |
|           |   | 34      |   |           |     |       | 5   | 34        |        |    | 25    | 5     |                 |                                                         | 1 Assignme            |                       | %) Weigh   |                                               |                                                   |                              |                    |        |          |  |
|           |   | 51      |   |           | - 1 |       |     |           |        | 23 |       |       |                 |                                                         | 2 Exam (Be            | +1 6                  | 8.0        | 0.2 13                                        | .60                                               | F                            | xam 1              | 34 /50 |          |  |



|    |                     |  |    |  |                     |  |             |  |                     | ○ ● ● Autodave ● ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ |   |   |             |                             |                   |     |               |       |                                        |                     |              |                              |                |        |               |        |
|----|---------------------|--|----|--|---------------------|--|-------------|--|---------------------|------------------------------------------------------|---|---|-------------|-----------------------------|-------------------|-----|---------------|-------|----------------------------------------|---------------------|--------------|------------------------------|----------------|--------|---------------|--------|
|    | Exam 1<br>Out of 50 |  |    |  | Exam 2<br>Out of 50 |  |             |  | Exam 3<br>Out of 50 |                                                      |   |   | Puste 🗳     | Cut Calibri (8 ) Format B I |                   |     | Review   View |       | Acrobat<br>np Text v<br>nge & Center v | Oeneral<br>\$ × % 9 | 10 00 Condit | onal Format<br>ting as Table | Call<br>Styles | insert | Dolote Format | ∑ Auto |
| 42 |                     |  | 43 |  |                     |  | A B C D F F |  |                     |                                                      |   |   |             | G H I                       |                   |     |               |       |                                        |                     |              |                              |                |        |               |        |
| 42 |                     |  | 43 |  |                     |  | 20          |  |                     |                                                      |   | A | -           | C                           | D                 | Е   |               | F     |                                        |                     | G            | н                            | - 1            |        |               |        |
|    |                     |  |    |  |                     |  |             |  |                     |                                                      |   |   |             |                             | Grade (%)         |     | Points        |       |                                        |                     |              |                              |                |        |               |        |
|    |                     |  |    |  |                     |  |             |  |                     |                                                      |   |   |             | m (Best)                    | 86.0              |     |               |       |                                        |                     | Exar         |                              | 42 /           |        |               |        |
|    |                     |  |    |  |                     |  |             |  |                     |                                                      |   |   |             | m (Mid)                     | 84.0              |     |               |       |                                        |                     | Exar         |                              | 43 /           |        |               |        |
|    |                     |  |    |  |                     |  |             |  |                     |                                                      |   |   |             | m (Lowest)                  | 56.0              |     |               |       |                                        |                     | Exar         | n 3                          | 28 /           | 50     |               |        |
|    |                     |  |    |  |                     |  |             |  |                     |                                                      |   |   |             | QE Score<br>al Exam         | 100.0<br>77.33333 |     |               |       |                                        |                     | Final Ex     |                              | 75.33          | /100   |               |        |
|    |                     |  |    |  |                     |  |             |  |                     |                                                      |   |   | o Fina      |                             | al Grade:         | 0.2 | 82.87         |       |                                        |                     | Final Ex     | am                           | /5.33 /        | 100    |               |        |
|    |                     |  |    |  |                     |  |             |  |                     | ,                                                    | 8 |   | etter Grade |                             | 82.87<br>B        |     |               | In at | udio Quiz To                           | and .               | 9 /          | /AE                          |                |        |               |        |
|    |                     |  |    |  |                     |  |             |  |                     |                                                      |   |   | 9           | FIIIdi L                    | etter Grade       |     | •             |       |                                        | III-SU              | MyLab To     |                              | 172            |        |               |        |
|    |                     |  |    |  |                     |  |             |  |                     |                                                      |   |   | 10          |                             |                   |     |               |       |                                        | Total Eva           | loration Poi |                              | 18 /           |        |               |        |
|    |                     |  |    |  |                     |  |             |  |                     |                                                      |   |   | 11          |                             |                   |     |               |       |                                        | TOTALEXP            | ioration ron | its                          | 10 /           | 42     |               |        |
|    |                     |  |    |  |                     |  |             |  |                     |                                                      |   |   | 12          |                             |                   |     |               |       |                                        |                     | MQE To       | tal                          | 70             |        |               |        |
|    |                     |  |    |  |                     |  |             |  |                     |                                                      |   |   | 13          |                             |                   |     |               |       |                                        |                     | MQE Sco      |                              | 70 /           |        |               |        |
|    |                     |  |    |  |                     |  |             |  |                     |                                                      |   |   | 14          |                             |                   |     |               |       |                                        |                     | AQE addition |                              | 0              |        |               |        |
|    |                     |  |    |  |                     |  |             |  |                     |                                                      |   |   | 15          |                             |                   |     |               |       |                                        |                     |              |                              | ·              |        |               |        |
|    |                     |  |    |  |                     |  |             |  |                     |                                                      |   |   | 16          |                             |                   |     |               | Fina  | l Exam 29                              | 6 Bonus? (          | CIOS incenti | ve) TI                       | RUE            |        |               |        |
|    |                     |  |    |  |                     |  |             |  |                     |                                                      |   |   | 17          |                             |                   |     |               |       |                                        |                     | MQE Bor      |                              | 0              |        |               |        |
|    |                     |  |    |  |                     |  |             |  |                     |                                                      |   |   | 18          |                             |                   |     |               |       |                                        | Total Fir           | al Exam Bor  |                              | 2              |        |               |        |
|    |                     |  |    |  |                     |  |             |  |                     |                                                      |   |   | 19          |                             |                   |     |               |       |                                        |                     |              |                              |                |        |               |        |
|    |                     |  |    |  |                     |  |             |  |                     |                                                      |   |   | 20          |                             |                   |     |               |       |                                        |                     |              |                              |                |        |               |        |
|    |                     |  |    |  |                     |  |             |  |                     |                                                      |   |   | 21          |                             |                   |     |               |       |                                        |                     |              |                              |                |        |               |        |
|    |                     |  |    |  |                     |  |             |  |                     |                                                      |   |   | 00          |                             |                   |     |               |       |                                        |                     |              |                              |                |        |               |        |



# Section 7.4: The Singular Value Decomposition

Chapter 7: Orthogonality and Least Squares

Math 1554 Linear Algebra

Steps to compute SVD of A:

\*compute A^TA

\*find eigenvalues of A^TA call them  $\sigma_i^2$ 

\*find orthonormal eigenvectors of A^TA call them v\_i

\*Compute u\_i=1/ $\sigma$ \_i, Av\_i, A=U $\Sigma$ V^T

 $U{=}[u1~u2~...~um]~V{=}[v1~v2~...~vn]$  both orthogonal matrices And  $\Sigma~$  is a diagonal matrix with diagonal entries  $\sigma\_i$ 

|      |               | Mon     | Tue        | Wed            | Thu        | Fri      |
|------|---------------|---------|------------|----------------|------------|----------|
| Weel | k Dates       | Lecture | Studio     | Lecture        | Studio     | Lecture  |
| 1    | 8/21 - 8/25   | 1.1     | W\$1.1     | 1.2            | W\$1.2     | 1.3      |
| 2    | 8/28 - 9/1    | 1.4     | WS1.3,1.4  | 1.5            | WS1.5      | 1.7      |
| 3    | 9/4 - 9/8     | Break   | W51.7      | 1.8            | WS1.8      | 1.9      |
|      | 9/11 - 9/15   | 2.1     | W51.9,2.1  | Exam 1, Review | Cancelled  | 2.2      |
| 5    | 9/18 - 9/22   | 2.3.2.4 | W\$2.2,2.3 | 2.5            | W\$2.4,2.5 | 2.8      |
| 5    | 9/25 - 9/29   | 2.9     | W52.8,2.9  | 3.1,3.2        | WS3.1,3.2  | 3.3      |
| ,    | 10/2 - 10/6   | 4.9     | W53.3,4.9  | 5.1,5.2        | WS5.1,5.2  | 5.2      |
| 3    | 10/9 - 10/13  | Break   | Break      | Exam 2, Review | Cancelled  | 5.3      |
| ,    | 10/16 - 10/20 | 5.3     | W\$5.3     | 5.5            | WS5.5      | 6.1      |
| 10   | 10/23 - 10/27 | 6.1,6.2 | W56.1      | 6.2            | WS6.2      | 6.3      |
| 11   | 10/30 - 11/3  | 6.4     | W56.3,6.4  | 6.4,6.5        | WS6.4,6.5  | 6.5      |
| 12   | 11/6 - 11/10  | 6.6     | W\$6.5,6.6 | Exam 3, Review | Cancelled  | PageRank |
| 13   | 11/13 - 11/17 | 7.1     | WSPageRank | 7.2            | WS7.1,7.2  | 7.3      |
| 14   | 11/20 - 11/24 | 7.3,7.4 | W57.2,7.3  | Break          | Break      | Break    |
| 15   | 11/27 - 12/1  | 7.4     | W57.3,7.4  | 7.4            | WS7.4      | 7.4      |
|      |               |         |            |                |            |          |

12/11 - 12/15 Final Exams: MATH 1554 Common Final Exam T



## Topics and Objectives

## Topics

1. The Singular Value Decomposition (SVD) and some of its applications.

## Learning Objectives

- $1. \;$  Compute the SVD for a rectangular matrix.
- 2. Apply the SVD to

  - estimate the rank and condition number of a matrix,
     construct a basis for the four fundamental spaces of a matrix, and ► construct a spectral decomposition of a matrix.

#### Example 1

The linear transform whose standard matrix is

$$A = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2\sqrt{2} & 0 \\ 0 & \sqrt{2} \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 2 & 1 \end{pmatrix}$$

maps the unit circle in  $\mathbb{R}^2$  to an ellipse, as shown below. Identify the unit vector  $\vec{x}$  in which  $||A\vec{x}||$  is maximized and compute this length.



## Singular Values

The matrix  $A^TA$  is always symmetric, with non-negative eigenvalues  $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ . Let  $\{\vec{v}_1,\ldots,\vec{v}_n\}$  be the associated orthonormal eigenvectors. Then

$$||A\vec{v}_{j}||^{2} =$$

If the A has rank r , then  $\{A\vec{v}_1,\dots,A\vec{v}_r\}$  is an orthogonal basis for ColA: For  $1 \le j < k \le r$ :

$$(A\vec{v}_j)^T A\vec{v}_k =$$

**Definition:**  $\sigma_1=\sqrt{\lambda_1}\geq\sigma_2=\sqrt{\lambda_2}\cdots\geq\sigma_n=\sqrt{\lambda_n}$  are the singular values of A.

Section 7.4 Slide 388

#### The SVD

Theorem: Singular Value Decomposition

$$\begin{split} \mathbf{A} & m \times n \text{ matrix with rank } r \text{ and non-zero singular values } \sigma_1 \geq \\ \sigma_2 \geq \cdots \geq \sigma_r \text{ has a decomposition } \mathbf{C} \Sigma V^T \text{ where} \\ & \Sigma = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix}_{m \times n} = \begin{bmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & \vdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_r & 0 \\ 0 & \vdots & \vdots & \ddots & 0 \end{bmatrix} \end{split}$$

U is a  $m\times m$  orthogonal matrix, and V is a  $n\times n$  orthogonal matrix.

140000 500

# Algorithm to find the SVD of A

Suppose A is  $m \times n$  and has rank  $r \leq n$ .

- 1. Compute the squared singular values of  $A^TA$ ,  $\sigma_i^2$ , and construct  $\Sigma$ .
- 1. Compute the squared singular values of 21 21,  $\sigma_i$ , and construct 2.
- 2. Compute the unit singular vectors of  $A^TA,\, \vec{v}_i,$  use them to form V.
- 3. Compute an orthonormal basis for  $\operatorname{Col} A$  using

Example 3: Construct the singular value decomposition of

$$\vec{u}_i = \frac{1}{\sigma_i} A \vec{v}_i, \quad i = 1, 2, \dots r$$

Extend the set  $\{\vec{u}_i\}$  to form an orthonomal basis for  $\mathbb{R}^m,$  use the basis for form U.

Section 7.4 Slide 3

 $\begin{bmatrix} 2 & 0 \\ 0 & -3 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} =$ 

Example 2: Write down the singular value decomposition for

Section 7.4 Slide 3

 $A = \begin{bmatrix} -2 & 2 \\ 2 & -2 \end{bmatrix}$ (It has rank 1.)

#### THEOREM

The Invertible Matrix Theorem (concluded)

Let A be an  $n \times n$  matrix. Then the following statements are each equivalent to the statement that A is an invertible matrix.

- u.  $(\text{Col } A)^{\perp} = \{0\}.$
- v.  $(\operatorname{Nul} A)^{\perp} = \mathbb{R}^n$ .
- w. Row  $A = \mathbb{R}^n$ .
- x. A has n nonzero singular values.





#### Applications of the SVD

The SVD has been applied to many modern applications in CS engineering, and mathematics (our textbook mentions the first four).

- . Estimating the rank and condition number of a matrix
- . Constructing bases for the four fundamental spaces
- Computing the pseudoinverse of a matrix
- · Linear least squares problems
- Non-linear least-squares
   https://en.wikipedia.org/wiki/Non-linear.least.squares
- Machine learning and data mining https://en.wikipedia.org/wiki/K-SVD
- Facial recognition https://en.wikipedia.org/wiki/Eigenface
- Principle component analysis https://en.wikipedia.org/wiki/Principal.component.analysis
- Image compression

Students are expected to be familiar with the  $I^{st}$  two items in the list. .4 Stde 395

#### The Condition Number of a Matrix

If A is an invertible  $n \times n$  matrix, the ratio  $\frac{\sigma_1}{\sigma_n}$ 

is the condition number of A.

- $\circ$  The condition number of a matrix describes the sensitivity of a solution to  $A\vec{x}=\vec{b}$  is to errors in A.
- . We could define the condition number for a rectangular matrix, but
  - that would go beyond the scope of this course.

#### Example 4

For  $A=U\Sigma V^*,$  determine the rank of A, and orthonormal bases for NullA and  $({\rm Col}A)^\perp.$ 

Section 7.4 Slide 397

#### The Four Fundamental Spaces



- $\begin{array}{ll} 1. & A\vec{v}_s = \sigma_s\vec{v}_s, \\ 2. & \vec{v}_s, \dots, \vec{v}_r \text{ is an orthonormal basis for Row} A. \\ 3. & \vec{u}_1, \dots, \vec{v}_r \text{ is an orthonormal basis for Col} A. \\ 4. & \vec{v}_{r+1}, \dots, \vec{v}_n \text{ is an orthonormal basis for Null} A. \\ 5. & \vec{u}_{r+1}, \dots, \vec{u}_n \text{ is an orthonormal basis for Null} A^T. \end{array}$

Section 7.4 Slide 209

#### The Spectral Decomposition of a Matrix

The SVD can also be used to construct the spectral decomposition for any matrix with rank  $\boldsymbol{r}$ 

$$A = \sum_{s=1}^r \sigma_s \vec{u}_s \vec{v}_s^T,$$

where  $\vec{u}_s, \vec{v}_s$  are the  $s^{th}$  columns of U and V respectively.

For the case when  ${\cal A}={\cal A}^T$  , we obtain the same spectral decomposition that we encountered in Section 7.2.















## 7.4 EXERCISES

Find the singular values of the matrices in Exercises 1-4.

1. 
$$\begin{bmatrix} 1 & 0 \\ 0 & -3 \end{bmatrix}$$
 2.  $\begin{bmatrix} -3 \\ 0 \end{bmatrix}$ 

Find an SVD of each matrix in Exercises 5–12. [Hint: In Exer- $\Gamma = 1/3$  2/3 2/3  $\mathbb{Z}$ 

cise 11, one choice for 
$$U$$
 is 
$$\begin{bmatrix} -1/3 & 2/3 & 2/3 \\ 2/3 & -1/3 & 2/3 \\ 2/3 & 2/3 & -1/3 \end{bmatrix}$$
. In Exer-

cise 12, one column of U can be  $\begin{bmatrix} 1/\sqrt{6} \\ -2/\sqrt{6} \\ 1/\sqrt{6} \end{bmatrix}$ 

5. 
$$\begin{bmatrix} -2 & 0 \\ 0 & 0 \end{bmatrix}$$
 6.  $\begin{bmatrix} -3 & 0 \\ 0 & -2 \end{bmatrix}$   
7.  $\begin{bmatrix} 2 & -1 \\ 2 & 2 \end{bmatrix}$  8.  $\begin{bmatrix} 4 & 6 \\ 0 & 4 \end{bmatrix}$   
9.  $\begin{bmatrix} 3 & -3 \\ 0 & 0 \\ 1 & 1 \end{bmatrix}$  10.  $\begin{bmatrix} 7 & 1 \\ 5 & 5 \\ 0 & 0 \end{bmatrix}$   
11.  $\begin{bmatrix} -3 & 1 \\ 6 & -2 \\ 6 & -2 \end{bmatrix}$  12.  $\begin{bmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 1 \end{bmatrix}$ 

- **13.** Find the SVD of  $A = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix}$  [*Hint:* Work with  $A^T$ .]
- **14.** In Exercise 7, find a unit vector **x** at which A**x** has maximum length.
- 15. Suppose the factorization below is an SVD of a matrix A, with the entries in U and V rounded to two decimal places.

$$A = \begin{bmatrix} .40 & -.78 & .47 \\ .37 & -.33 & -.87 \\ -.84 & -.52 & -.16 \end{bmatrix} \begin{bmatrix} 7.10 & 0 & 0 \\ 0 & 3.10 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\times \begin{bmatrix} .30 & -.51 & -.81 \\ .76 & .64 & -.12 \\ .58 & -.58 & .58 \end{bmatrix}$$

- a. What is the rank of A?
- b. Use this decomposition of A, with no calculations, to write a basis for Col A and a basis for Nul A. [Hint: First write the columns of V.]
- **16.** Repeat Exercise 15 for the following SVD of a  $3 \times 4$  matrix A:

matrix A:
$$A = \begin{bmatrix} -.86 & -.11 & -.50 \\ .31 & .68 & -.67 \\ .41 & -.73 & -.55 \end{bmatrix} \begin{bmatrix} 12.48 & 0 & 0 & 0 \\ 0 & 6.34 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\times \begin{bmatrix} .66 & -.03 & -.35 & .66 \\ -.13 & -.90 & -.39 & -.13 \\ .65 & .08 & -.16 & -.73 \\ -.34 & .42 & -.84 & -.08 \end{bmatrix}$$

In Exercises 17–24, A is an  $m \times n$  matrix with a singular value decomposition  $A = U \Sigma V^T$ , where U is an  $m \times m$  orthogonal matrix,  $\Sigma$  is an  $m \times n$  "diagonal" matrix with r positive entries and no negative entries, and V is an  $n \times n$  orthogonal matrix. Justify each answer.

- **17.** Show that if *A* is square, then  $|\det A|$  is the product of the singular values of *A*.
- **18.** Suppose A is square and invertible. Find a singular value decomposition of  $A^{-1}$ .
- 19. Show that the columns of V are eigenvectors of  $A^T\!A$ , the columns of U are eigenvectors of  $AA^T$ , and the diagonal

#### 426 CHAPTER 7 Symmetric Matrices and Quadratic Forms

entries of  $\Sigma$  are the singular values of A. [Hint: Use the SVD to compute  $A^T\!A$  and  $AA^T$ .]

- **20.** Show that if P is an orthogonal  $m \times m$  matrix, then PA has the same singular values as A.
- 21. Justify the statement in Example 2 that the second singular value of a matrix A is the maximum of ||Ax|| as x varies over all unit vectors orthogonal to v<sub>1</sub>, with v<sub>1</sub> a right singular vector corresponding to the first singular value of A. [Hint: Use Theorem 7 in Section 7.3.]
- **22.** Show that if A is an  $n \times n$  positive definite matrix, then an orthogonal diagonalization  $A = PDP^T$  is a singular value decomposition of A.
- 23. Let  $U = [\mathbf{u}_1 \cdots \mathbf{u}_m]$  and  $V = [\mathbf{v}_1 \cdots \mathbf{v}_n]$ , where the  $\mathbf{u}_i$  and  $\mathbf{v}_i$  are as in Theorem 10. Show that

$$A = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^T + \dots + \sigma_r \mathbf{u}_r \mathbf{v}_r^T.$$

- **24.** Using the notation of Exercise 23, show that  $A^T \mathbf{u}_j = \sigma_j \mathbf{v}_j$  for  $1 \le j \le r = \operatorname{rank} A$ .
- **25.** Let  $T: \mathbb{R}^n \to \mathbb{R}^m$  be a linear transformation. Describe how to find a basis  $\mathcal{B}$  for  $\mathbb{R}^n$  and a basis  $\mathcal{C}$  for  $\mathbb{R}^m$  such that the

matrix for T relative to  $\mathcal B$  and  $\mathcal C$  is an  $m \times n$  "diagonal" matrix.

[M] Compute an SVD of each matrix in Exercises 26 and 27. Report the final matrix entries accurate to two decimal places. Use the method of Examples 3 and 4.

**26.** 
$$A = \begin{bmatrix} -18 & 13 & -4 & 4 \\ 2 & 19 & -4 & 12 \\ -14 & 11 & -12 & 8 \\ -2 & 21 & 4 & 8 \end{bmatrix}$$

$$\mathbf{27.} \ \ A = \begin{bmatrix} 6 & -8 & -4 & 5 & -4 \\ 2 & 7 & -5 & -6 & 4 \\ 0 & -1 & -8 & 2 & 2 \\ -1 & -2 & 4 & 4 & -8 \end{bmatrix}$$

- 28. [M] Compute the singular values of the  $4 \times 4$  matrix in Exercise 9 in Section 2.3, and compute the condition number  $\alpha_1/\alpha_2$
- 29. [M] Compute the singular values of the 5 × 5 matrix in Exercise 10 in Section 2.3, and compute the condition number σ<sub>1</sub>/σ<sub>5</sub>.