


7.1 Exercises

D which of the in E: 1-6 are you time, the eigenvalues in E 17-22 are the
(17) =4, 4, 7; (18) =3, =6, 9. (19) =2, 7. (20) =3, 15; (2I)I -
1 | Y B 9:(22)3,5.
5 =7 -5 =3
- KR | 1 =5
5 0 8 3 13. [l 3] 4. [—5 I]
k § [2 4] 4. |8 0 -4
X 2 0
3 4 6 =2
-% 2 0 P! 2 2 1 "-[4 9] "[-z 9]
s, 2 -6 2 &l2 2 2 1
0 2 =6 2 2 ¥ a2 _ =
I ok 0 1 -6 4
D which of the matrices in E 7-12areorthogonal. 37 |1 5 1 1. |- 2 =
If orthogonal, find the inverse. 5 | 4 <2 o
6 8 1 1
g ] Y ]
8 =6 1 =1 'S -2 & [ 5 8 =4
19. |=2 6 2 20. 8 5 -4
13 2/3 23
9. ';/: f/:] w0 |23 13 =23 |4 2.3 | =4 =4 =1
/s 4/ 23 =23 13
My A o P o 4 01
1wl o 13 =253 3 |5 s a2 s B
5/3 =4/3 =2/3
L! B 3% Lo 1 o0 4
S5 5 =5=5
N A .
e oy 8. Letd=|=1 4 =1 adv= I . Verify that § is
S5 =5 5 =5 T 4
Orth lly di lize the ices in Exercises 13-22, giv- mc-gemalueoanndvumelgaweclmThenmﬂngmalIy

m;anonhogoulmmxl’ndadngomlmmxb To save

NELE o

diagonalize A.

38. Suppose A = PRP~' where P is orthogonal and R is upper
triangular. Show that if A is symmetric, then R is symmetric
and hence is actually a diagonal matrix.

1 =
=1 |. Verify et v, and vy ase cigenvectors of A. Thea 39. Construct a spectral decomposition of A from Example 2.
1 40. Construct a spectral decomposition of A from Example 3.
T 41 Letube a unit vector in R*, and let B = uu’.
In Exercises 25-32, mark each statement True or False (T/F). a. Given any x in R”, compute Bx and show that Bx is
Justify each answer. the orthogonal projection of x onto u, as described in
25. (T/F) An n x n matrix that is orthogonally diagonalizable Section 6.2.
must be symmetric. b. Show that B is a symmetric matrix and B> = B.
26. (T/F) There are sy " ioes that are sot orthogo- c. Show_lhﬂe:une:ganmo(ﬂ.wuumem
nally diagonalizable.
42. Let B be an n x n symmetric matrix such that B = B. Any
27. (T/F) An matrix is orth i such matrix is called a projection matrix (or an orthogonal
A posp °
28. (T/F) If B = PDPT, where PT = P=" and D is a diago- '::‘;‘f';_"")' e B A At
nal matrix, then B is a symmetric matrix. : " a
a. Show that z is orthogonal to §.
29. (T/F) For a nonzero v in R", the matrix w” is called a b. Let W be the column space of B. Show that y is the sum
projection matrix. of a vector in W and a vector in W Why does this prove
30. (T/F) If A7 = Aand if vectors uand v satisfy Au = 3uand w«z{“;“’” ol y st e colemd
Av=4dv. thenu-v=0. :
Orthogonally diagonalize the matrices in Exercises 43—46. To
31 (T/F) An n>xn symmetric matrix has n distinct real  practice the methods of this section, do not use an eigenvector
eigenvalues. routine from your matrix program. Instead, use the program to find
. O Tttt S5, 5 e Lk 2
uwmmd:mnhplclydlhmmspomng i :
cigenvalue. f6 2 9 =6
o o go. | 2 66 9
33. Show that if A is an n x n symmetric matrix, then (Ax)-y = g <E 5 3
x-(Ay) forall x.y in R". -6 9 2 6
34. Suppose A is a symmetric n X n matrix and B is any n x m 63 =18 =06 =04
matrix. Show that B7AB, B”B. and BB” are symmetric Haa |18 84 -04 2
matrices. -06 =04 72 =12
_ -04 .12 =12 .66
35. Suppose A is and a
Explain why A"ulhnotﬂmgom.llydngmnhnbh [31 58 08 44
s 58 =56 .44 =58
36. Suppose A and B are both orthogonally diagonalizable and 08 44 .19 =08
AB = BA. Explain why AB is also orthogonally diagonaliz- 44 =58 =08 31
able. &
[8 2 2 -6 9
37. Let A = PDP™' where P is orthogonal and D is diagonal, 2 8 2 =6 9
and let A be an eigenvalue of A of multiplicity k. Then | 46, 2 2 8 =6 9
A appears k times on the diagonal of D. Explain why the -f =6 =6 24 9
dimension of the eigenspace for A is k. 9 9 9 9 =21




7.2 EXERCISES

1. Compute the quadratic form x”Ax, when 4 = [133 1{3]
and
_|x _ |6 !
A N
3 2 0

L

Compute the quadratic form x’Ax,for A = |2 2 1
0o 1 0
and

5. Find the matrix of the quadratic form. Assume x is in R*.
a. 3x7 + 2x2 — 5x3 — 6x1x2 + 8x1x3 — 4x5x3
b. 6x1x2 + 4x1x3 — 10x2Xx3
6. Find the matrix of the quadratic form. Assume x is in R*.
a. 3x7 —2x3 + 5x3 + 4xix2 — 6x1x3
b. 4x] —2x1x2 + 4x2x3
7. Make a change of variable, x = Py, that transforms the

quadratic form x7 + 10x,x> + x3 into a quadratic form with
no cross-product term. Give P and the new quadratic form.

8. Let A be the matrix of the quadratic form
9x7 + 7x3 + 11x3 — 8x;x, + 8xx3

It can be shown that the eigenvalues of A are 3,9, and 15.
Find an orthogonal matrix P such that the change of variable
x = Py transforms x"4x into a quadratic form with no cross-
product term. Give P and the new quadratic form.

Classify the quadratic forms in Exercises 9-18. Then make a
change of variable, x = Py, that transforms the quadratic form
into one with no cross-product term. Write the new quadratic form.
Construct P using the methods of Section 7.1.

9. 4x7 —4x;x; + 4x3 10. 2x7 + 6x;x, — 6x3
11, 2x7 —4x,x, — X3
13 .\'lz —6x1x2 + 9.\’% 14. 3.\’|2 + 4x1x2

15. [M] —=3x7 — 7x3 — 10x3 — 10x] + 4x1x2 + 4x1x3+
4x1x4 + 6x3x4

16. [M] 4x7 + 4x3 + 4x7 + 4x7 + 8x,x2 + 8x30x5 — 6xyx4 +
6x5x3

17. [M] 11x7 + 1123 + 112 + 11x3 + 163,55 — 12x, x4+
12x5x3 + 16x3x4

18. [M] 2.\:,2 + 2x§ — 6xXx; — 6x,X3 — 6x)x5 — 6X3X3—
6x3x4 — 2X3X4

12, —x] —2xyx; — x3

19. What is the largest possible value of the quadratic
form 5x} + 8x3 if x = (x;,x;) and x'x = 1, that is, if
X7 4 x3 = 17 (Try some examples of x.)

20. What is the largest value of the quadratic form 5x7 — 3x3 if

x'x=1?

In Exercises 21 and 22, matrices are n x n and vectors are in R”.
Mark each statement True or False. Justify each answer.
21. a.

b. A quadratic form has no cross-product terms if and only
if the matrix of the quadratic form is a diagonal matrix.

The matrix of a quadratic form is a symmetric matrix.

c. The principal axes of a quadratic form x”Ax are eigenvec-
tors of A.

X -2 1/V2
ax=lx b.x=| -1 c.xX= l/ﬁ
X3 5 1/v2
3. Find the matrix of the quadratic form. Assume x is in R2.
a. 3x] —4x;x; + 5x3 b.3x] + 2x1x;

4. Find the matrix of the quadratic form. Assume x is in R?.
a. Sx} + 16x,x; — 5x3 b. 2x,x;

d. A positive definite quadratic form Q satisfies Q(x) > 0
for all x in R”.

e. If the eigenvalues of a symmetric matrix A are all posi-
tive, then the quadratic form x”Ax is positive definite.

f. A Cholesky factorization of a symmetric matrix A has
the form A = R”R, for an upper triangular matrix R with
positive diagonal entries.

22, a.

b. If A is symmetric and P is an orthogonal matrix, then
the change of variable x = Py transforms x’Ax into a
quadratic form with no cross-product term.

The expression [|x||? is not a quadratic form.

c. If A is a 2 x 2 symmetric matrix, then the set of x such
that x’Ax = ¢ (for a constant c) corresponds to either a
circle, an ellipse, or a hyperbola.

d. An indefinite quadratic form is neither positive semidef-
inite nor negative semidefinite.

e. If A is symmetric and the quadratic form x’Ax has only
negative values for x # 0, then the eigenvalues of A are
all positive.

Exercises 23 and 24 show how to classify a quadratic form
0@®) =xUx,whead=|? 2 ] anddet A # 0, without find-

b d
ing the eigenvalues of 4.

23. If A, and A, are the eigenvalues of A, then the characteristic
polynomial of A can be written in two ways: det(4 — A7)
and (A — A,)(A — A,). Use this fact to show that A, + A, =
a + d (the diagonal entries of A) and A1, = det A.

24. Verify the following statements.
a. Q is positive definite if det A > Oand a > 0.
b. Q is negative definite if det A > O anda < 0.
c. Q isindefinite if det 4 < 0.

25. Show that if B is m x n, then BB is positive semidefinite;
and if B is n x n and invertible, then B”B is positive definite.

26. Show that if an n x n matrix A is positive definite, then there
exists a positive definite matrix B suchthat A = B'B.[Hint:
Write A = PDP" ,with PT = P~ Produce a diagonal ma-
trix C such that D = C'C, and let B = PCP7”. Show that
B works.]

PO

27. Let A and B be symmetric n x n matrices whose eigenvalues
are all positive. Show that the eigenvalues of A + B are all
positive. [Hint: Consider quadratic forms.]

28. Let A be an n x n invertible symmetric matrix. Show that
if the quadratic form x"Ax is positive definite, then so is the
quadratic form x’A~"x. [Hint: Consider eigenvalues.]

and Q ic Forms  7-7




7.3 EXERCISES

In Exercises 1 and 2, find the change of variable x = Py that
transforms the quadratic form x’Ax into y’ Dy as shown.

1. 5x]+6x3+7x3 +4x,x—4x,x3 =9y] +6y3 +3y3
2. 3x743x34+5x3 4+ 631X+ 2x, X3+ 2x2x3 = Ty] +4y3

Hint: x and y must have the same number of coordinates, so the
quadratic form shown here must have a coefficient of zero for y3.

416 CHAPTER 7 Symmetric Matrices and Quadratic Forms

4. Q(x) = 3x]+3x3 +5x3 +6x1x242x1 X3+ 2x2x3 (See Exer-
cise 2.)

5. 0(x) =x}+x3—

6. O(x) =3x7 4+ 9x? +8xix2

7. Let Q(x) = —2x] — x3 + 4x,x; + 4x,x;. Find a unit vector
x in R* at which Q(x) is maximized, subject to x'x = 1.
[Hint: The eigenvalues of the matrix of the quadratic form
Qare2,~1,and —4.]

8. Let O(x) = 7x} + x3 + 7x7 — 8x,x; — 4x,x3 — 8x, .
Find a unit vccwr x in R? at which Q(x) is i d ab

10x, x5

subject to x’x = 1. [Hint: The eigenvalues of the matrix of
the quadratic form Q are 9 and —3.]

9. Find the maximum value of Q(x) = 7x} + 3x3 —2x;x,,
subject to the constraint x{ + x3 = 1. (Do not go on to find
a vector where the maximum is attained.)

10. Find the maximum value of Q(x) = —3x} + 5x3

cises 3-6.

—2xyx3,

In Exercises 3-6, find (a) the maximum value of Q(x) subject to
the constraint x’x = 1, (b) a unit vector u where this maximum is
attained, and (c¢) the maximum of Q(x) subject to the constraints
x’x = 1 and x"u = 0.

O(x) = 5x7 + 6x3 + 7x3 + 4x;x; — 4x5x3
(See Exercise 1.)

12. Let A be any eigenvalue of a symmetric matrix A. Justify
the statement made in this section that m < A < M, where
m and M are defined as in (2). [Hint: Find an x such that
A =x"Ax)

13. Let A be ann x n symmetric matrix, let M and m denote the
maxnmum and minimum values of the quadmnc form x7Ax,
where x”x = 1, and denote g unit
by u; and u,. The following ca.lculanons show lhat given any
number 7 between M and m, there is a unit vector x such that
t = x"Ax. Verify thatt = (1 — a&)m + aM for some number

0 and 1. Then let x = v/1 —au, + /au,, and

show that x"x = 1 and x"Ax = 1.

[M] In Exercises 14-17, follow the instructions given for Exer-

14, 3x,x2 + 5x1x3 + Tx1X4 + Tx2x3 + 5x2x8 + 3x3x4

subject to the constraint x7 + x% = 1. (Do not go on to find 15, 4x7—6x;x,—10x,x3— 10X, X5 —6x2x3 —6X2X4 —2X3X4

a vector where the maximum is attained.)
11. S

S

of a matrix A

X is a unit eig

16. —6x7 —10x3 —13x3 — 13x] —4x; X2 —4x; 03— 4x, X4 + 634

to an eigenvalue 3. What is the value of x’Ax? 17. xyx3 + 3x;x3 + 30x,x4 + 30x2x3 + 3x2x4 + X3X4
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Section 7.4 : The Singular Value Decomposition

Chapter 7: Orthogonality and Least Squares

Math 1554 Linear Algebra

4. | .

Steps to compute SVD of A:

*compute AATA

*find eigenvalues of AATA call them o_i"2

*find orthonormal eigenvectors of AATA call them v_i
*Compute u_i=1/0_i Av_i

A=UZVAT

U=[ut u2 ... um] V=[v1 v2 ... vn] both orthogonal matrices
And X is a diagonal matrix with diagonal entries o_i

Course Schedule

Week Dates
1 emeees
2 s

3 ws-am

& omi-ens
5 os-9m2
6 os-uz
7 102-1006
8 109-1013
9 1016-10120
10 10/23- 1027
1 0m-113
12 aws-1m0
1 -1y
14 120-13/2
15 w21
16 124-1208

71

Mon Toe
Lecture  Studio

1 wst1

14 w1314
Break wst

21 wst921
2324 ws2223
29 w2829
a9 ws3349
Break Break

53 wss3
6162 wsel

64 Ws6364
66 ws6566
7 WsPageRank
7374 ws7273
74 w7374

Lastlecture  Last Studio

Wed

Lecture

12

15

18

Exam 1, Review

25

3132

5152

Exam2, Review

62

6465

Exam 3, Review

72

Break

74

Reading Period

he

Studio

w12

wss

ws1e

Canceled

w2425

w3132

wss.152

Canceled

wss.s

wss2

w6465

Canceled

ws7.172

Breakc

w4

Fi
Lecture

13

Final Exams: MATH 1554 Common Final Exam Tuesday, December 12th at 6pm



.
9. | 0 0

Topics and Objectives

Topics

1. The Singular Value Decomposition (SVD) and some of its
applications.

Learning Objectives
1. Compute the SVD for a rectangular matrix.
2. Apply the SVD to
» estimate the rank and condition number of a matrix,
» construct a basis for the four fundamental spaces of a matrix, and
» construct a spectral decomposition of a matrix.

Swtion 74 Side 385

Example 1

The linear transform whose standard matrix is

1 /1 -1 2/2 0 2 -1
A=— =
V2\1 1 0 V2 2 1
maps the unit circle in R? to an ellipse, as shown below. Identify the unit
vector # in which || AZ|| is maximized and compute this length

X ER

multiply by A
—_—

Secton 74 Side 386



Singular Values

The matrix AT A is always symmetric, with non-negative eigenvalues
AL > X2 > -+ > X, > 0. Let {#],...,T,} be the associated orthonormal
eigenvectors. Then

[l 4512 =

If the A has rank 7, then {A%),..., A%} is an orthogonal basis for Col A:
For1<j<k<m:

(AT)T Ay, =
Defin 2 01 =L > 02 =g >0, =/, are the singular
values of A.

Section 7.4 Side 368

The SVD

Theorem: Singular Value Decomposition

A m x n matrix with rank  and non-zero singular values oy >
2> -+ > 0, has a decomposition USVT where

o 0 ... 0

Sh=

00 -

Ri..-| "

00 ... o
0 0,

U is a m x m orthogonal matrix, and V is a n x n orthogonal
matrix.

M=UYXV*



Algorithm to find the SVD of A Example 2: Write down the singular value decomposition for

2 0

Suppose A is m x n and has rank r < n. 0 -3
1. Compute the squared singular values of AT A, o7, and construct 3. 0 0

0 0

2. Compute the unit singular vectors of AT A, #;, use them to form V.

3. Compute an orthonormal basis for ColA using
I
;= —Av, i=12,...r
o

Extend the set {@;} to form an orthonomal basis for R™, use the
basis for form U.

Section 7.4 Siide 391 Section 7.4 Side 392

Example 3: Construct the singular value decomposition of
1 -1

A= (-2 2.
2 -2

(It has rank 1.)

Section 7.4 Side 393



THEOREM The Invertible Matrix Theorem (concluded)
Let A be an n x n matrix. Then the following statements are each equivalent to
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the statement that A is an invertible matrix.
u. (Col A)* = {0}.

v. (NulA)t =R".

w. Row4 =R".

X. A has n nonzero singular values.
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Singular value decomposition

Read Edit Viewhistory | Search Wikipedia Q

From Wikipedia, the free encyclopedia.

Inlinear algebra, the singular value decomposition (SVD) is a factorization of a real or complex matrix. It generalizes the
of a square eigenbasis to any m x 1 matrix. Itis related to the polar

decomposition.

Specifically, the singular value decomposition of an m % n complex matrix M is a factorization of the form UXV*, where U is an
m X m complex unitary matrix, % is an rm X n rectangular diagonal matrix with non-negative real numbers on the diagonal, and
Visann x n complex unitary matrix. If M is real, U and V' can also be guaranteed to be real orthogonal matrices. In such
contexts, the SVD is often denoted USV™

The diagonal entries a; = 5 of % are known as the sing of M. The number of s equalto the
rank of M. U and the columns of V are called vectors and right-sing! M, respectively.
‘The SVD s not unique. It to choose 50 that the sing izare in descending order. In

this case, 5 (but not always U and V) is uniquely determined by M.

, a similar UEV* inwhich  is square diagonal of size
7, where 7 < min{m, n} is the rank of M, and has anly the non-zero singular values. I this variant, U Is an m  r semi-
unitary marix and V is an n x 1 semi-unitary matrx, such that U*U = V*V =T,

Mathematical computing matrix the rank,
range, and nul space of a matrix. The SVD is also extremely useful n all areas of science, engineering, and statistics, such as
signal processing, least squares fitting of data, and process conol.

Contents [hide]
1 Ituive iterpretations
1.1 Rotation,coordinate scaing, and reflecton
| 12 Singula values s somiaxesof anslpse o alfpeck
13 The columns of Uand V are orhonormal bases
1.4 Goometrc meaning
2 Exampic
| 3 5vD and spoctral deoamnsiion
| a1 Sigular values_ 53211 _aciors, and teirretation o the SVD

usiraton of the singuiarvalue =
docomposition UEV- o a eal 2x2 matrx
"

Top: The action of M, ndicated by s
effect on the uritdisc D and the two
canorical unit vectors 2y and o

Left: The acton of V', a otation, on D,

o

Botiom: The acton of %, a scaling by
the singular values o, horizontaly
and o verticaly.

Right: The acton of U, another rotation.

Applications of the SVD

The SVD has been applied to many modern applications in CS,

engineering, and mathematics (our textbook mentions the first four)

« Estimating the rank and condition number of 3 matrix

« Constructing bases for the four fundamental spaces

is the condition number of A

« Computing the pseudoinverse of a matrix

© Linear least squares problems Note that:

« Non-linear least-squares

The Condition Number of a Matrix

If A'is an invertible n x n matrix, the ratio

a1

o

© The condition number of a matrix describes the sensitivity of a

https:/ /en wikipedia.org/wiki/Non-linear least squares solution to At = b is to errors in A.
 Machine learning and data mining + We could define the condition number for a rectangular matrix, but
https:/ /en.wikipedia.org /wiki/K-SVD

Facial recognition

https:/ /en.wikipedia.org,/wiki/ Eigenface
« Principle component analysis

https:/ /en.wikipedia.org,/wiki/Principal component analysis
« Image compression

Students are expected to be familiar with the 15 two items in the list.

that would go beyond the scope of this course.



Example 4

For A=UXV", determine the rank of A, and orthonormal bases for
NullA and (Col4)*

001 0
010 0
U=looo -1
100 0
40 0 00
03 0 0
)::llllﬁl)()
00 000
0 100 0
0 010 0
Vi=| V02 000 Vi8
0 001 0
—VOE 0 0 0 V02

The Four Fundamental Spaces

onat 4

1 A7, =0,i..

2. d,...,i, is an orthonormal basis for RowA.
3. ;... is an orthonormal basis for ColA.
4 F

5 ety

an orthonormal basis for Null A7

The Spectral Decomposition of a Matrix

The SVD can also be used to construct the spectral decomposition for
any matrix with rank

A=Y e,

where i, 7, are the s'* columns of U and V respectively.

For the case when A = A”, we obtain the same spectral decomposition
that we encountered in Section 7.2



clc
RGB=imread('buzz.jpg');
gray=rgb2gray(RGB) ;
A=im2double(gray);
[U,8,V]=svd(A);

sz=size(A)

rank(A)

Approx=zeros(sz);

r=2

for i=l:r

u=U(:,1i);

s=S(i,i);
v=V(:,1);
Approx=Approx+s*u*v';
end
Approx;
% subplot(1l,2,1),imshow(A),title('original');
subplot(1,2,2),imshow(Approx),title([ 'low rank r=',num2str(r)]);




rank 1image
clc

RGB=imread('buzz.jpg');
gray=rgb2gray(RGB) ;
A=im2double(gray);
[U,S,V]=svd(A);
sz=size(A)
rank(A) &
Approx=zeros(sz);
r=2
for i=l:r
u=U(:,1i);
s=S(i,i);
v=V(:,1);
Approx=Approx+s*u*v’';
end
Approx;
% subplot(1l,2,1),imshow(A),title('original');
subplot(1,2,2),imshow(Approx),title(['low rank

r=',num2str(r)]);

original low rank r=18




7.4 EXERCISES

Find the singular values of the matrices in Exercises 1-4.
1 0 -3 0
L [0 _3] 2. [ . 0]
2 3 3.0
2[5 2] «[3 9]

Find an SVD of each matrix in Exercises 5-12. [Hint: In Exer-

-1/3 2/3 2/3
cise 11, one choice for U is 2/3 —1/3 2/3 |.In Exer-
2/3  2/3 -1/3
1//6
cise 12, one column of U can be _Z/JE |
1/v6
-2 0 -3 0
s.[ . 0] s.[ . _2]
2 -1 4 6
7.[2 2] s.[o 4]
3 3 7 1
9. |0 0 10. |5 5
1 1 0o 0
-3 1 1 1
11. 6 -2 12. 0 1
6 -2 -1 1
i 31 2 2 . st
13. Findthe SVD of 4 = 4 13v9 [Hint: Work with A" ]

14. In Exercise 7, find a unit vector x at which Ax has maximum

length.

15. Suppose the factorization below is an SVD of a matrix A4,

with the entries in U and V rounded to two decimal places.

40 —-78 47 7.10 0 0
A= .37 —-.33 -.87 0 310 0
—84 —-52 —.16 0 0 0

30 —.51 —81

x|.76 .64 —.12

.58 —.58 .58

a. What is the rank of A?

b. Use this decomposition of A, with no calculations, to
write a basis for Col A and a basis for Nul A. [Hint: First
write the columns of V]

16. Repeat Exercise 15 for the following SVD of a 3 x4
matrix A:
—86 —.11 —.50 12.48 0 (U]
A= 31 .68 —.67 0 6.34 0o 0
41 =73 -55 0 0 0o 0
.66 —03 —35 .66
—-13 -9 -39 -.13
.65 .08 —.16 —.73
—34 42 -84 —08

In Exercises 17-24, A is an m x n matrix with a singular value
decomposition A = USV7”, where U is an m x m orthogonal
matrix, ¥ is an m x n “diagonal” matrix with r positive entries
and no negative entries, and V is an n x n orthogonal matrix.
Justify each answer.

17. Show that if A is square, then |det A| is the product of the
singular values of 4.

18. Suppose A is square and invertible. Find a singular value
decomposition of A™".

19. Show that the col of V are eig tors of A’A, the
columns of U are eigenvectors of AA”, and the diagonal
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entries of X are the singular values of A. [Hint: Use the SVD
to compute A4 and AA” ]

Show that if P is an orthogonal m x m matrix, then PA has
the same singular values as A.

21. Justify the statement in Example 2 that the second singular
value of a matrix A is the maximum of ||Ax| as x varies
over all unit vectors orthogonal to v;, with v, a right singular
vector cor ding to the first si value of A. [Hint:

Use Theorem 7 in Section 7.3.]

Show that if A is an n x n positive definite matrix, then an
orthogonal diagonalization A = PDP” is a singular value
decomposition of A.

LetU = [w u,landV = [v;

w; and v; are as in Theorem 10. Show that

22

Va ], where the

A =owv] +omv] + -+ ou, v
Using the notation of Exercise 23, show that Aru,- = 0,V;
forl < j <r =rank A.

Let T : R” — R™ be a linear transformation. Describe how
to find a basis B for R" and a basis C for R” such that the

matrix for 7 relative to B and C is an m x n “diagonal”
matrix.

[M] Compute an SVD of each matrix in Exercises 26 and 27.
Report the final matrix entries accurate to two decimal places. Use
the method of Examples 3 and 4.

-18 13 —4 4
2 19 -4 12
200A=| 48 1 -i2' 8
-2 21 4 8
6 -8 -4 5 —4
2 7 -5 -6 4
Adaali= 0 -1 -8 2 2
-1 -2 4 4 -8
28. [M] Compute the singular values of the 4 x 4 matrix in

Exercise 9 in Section 2.3, and compute the condition number
01/04.

29. [M] Compute the singular values of the 5x 5 matrix in
Exercise 10 in Section 2.3, and compute the condition num-

ber 0,/05s.



