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Motivation: it can be useful to take large powers of matrices, for example
A*, for large k.

But: multiplying two n x n matrices requires roughly n* computations. Is
there a more efficient way to compute A*?
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Topics and Objectives

Topics
1. Diagonal, similar, and diagonalizable matrices
2. Diagonalizing matrices

Learning Objectives
For the topics covered in this section, students are expected to be able to
do the following.
1. Determine whether a matrix can be diagonalized, and if possible
diagonalize a square matrix.
2. Apply diagonalization to compute matrix powers.
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Section 5.3 : Diagonalization

Chapter 5 : Eigenvalues and Eigenvectors

Math 1554 Linear Algebra

Motivation: it can be useful to take large powers of matrices, for example
AF, for large k.

But: multiplying two 7 x n matrices requires roughly n* computations. Is
there a more efficient way to compute A*?

Diagonal Matrices

A matrix is diagonal if the only non-zero elements, if any, are on the
main diagonal.

The following are all diagonal matrices.

[S 3} 2, & [g 8}

We'll only be working with diagonal square matrices in this course.
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Topics and Objectives

Topics

1. Diagonal, similar, and diagonalizable matrices

2. Diagonalizing matrices

Learning Objectives

For the topics covered in this section, students are expected to be able to
do the following.
1. Determine whether a matrix can be diagonalized, and if possible
diagonalize a square matrix.

2. Apply diagonalization to compute matrix powers.

Powers of Diagonal Matrices

If A is diagonal, then A* is easy to compute. For example,

3 0
4 (0 0.5)

But what if A is not diagonal?
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Diagonalization Diagonalization

Suppose A € R™". We say that A is diagonalizable if it is similar to a Theorem
diagonal matrix, D. That is, we can write If A'is diagonalizable < A has n linearly independent eigenvectors.
A=PDP!

Note: the symbol € means * if and only if .
Also note that A = PDP~! if and only if
A
A= [0y Ty T 6 [T G- Ta] ™
. N

where @, ..., 7, are linearly independent eigenvectors, and A1, ..., A
are the corresponding eigenvalues (in order).
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Distinct Eigenvalues Non-Distinct Eigenvalues

Theorem. Suppose

. e i | o Aisnxn
If Ais n x n and has n distinct eigenvalues, then A is

e e o A has distinct eigenvalues Mi,..., A, k <1

® a; = algebraic multiplicity of \;

o d; = dimension of A; eigenspace ( “geometric multiplicity")
Why does this theorem hold? Then
1. d; <ajforalli
2. A'is diagonalizable < ¥d; =n < d; = a; for all i
3. As diagonalizable <> the eigenvectors, for all eigenvalues, together

Is it necessary for an n x n matrix to have n distinct eigenvalues for it to form a basis for R™.

be diagonalizable?
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Diagonalize if possible. Diagonalize if possible.

%) G s)
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Example 3 Additional Example (if time permits)

The eigenvalues of A are A = 3,1. If possible, construct P and D such Note that
that AP = PD.

2 5 8
-2 -2 -5

R Lt _
(7 4 16) ”:[1 Jrk,., wn:M, k=1,23,...
A=

generates a well-known sequence of numbers.

Use a diagonalization to find a matrix equation that gives the n'"*
number in this sequence.
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Additional Example (if time permits)

Note that

z}=[‘1’ ﬂm, io=[ﬂ, k=123,...

generates a well-known sequence of numbers.

Use a diagonalization to find a matrix equation that gives the n**
number in this sequence.
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THEOREM 5 The Diagonalization Theorem
An n x n matrix A is diagonalizable if and only if A has n linearly independent
eigenvectors.
Infact, A = PDP",with D a diagonal matrix, if and only if the columns of
P are n linearly independent eigenvectors of A. In this case, the diagonal entries
of D are eigenvalues of A that correspond, respectively, to the eigenvectors in P.

EXAMPLE 4 Diagonalize the following matrix, if possible.

2 & 4@
A=|-4 -6 -3
g '3

THEOREM 6 aaaisd Rttt e AA R e THEOREM 7 Let A be an n x n matrix whose distinct eigenvalues are 4. ..., Ap.
a. For 1 < k < p, the dimension of the eigenspace for A; is less than or equal to
the multiplicity of the eigenvalue A;.

b. The matrix A is diagonalizable if and only if the sum of the dimensions of
the eigenspaces equals 7, and this happens if and only if (i) the characteristic
polynomial factors completely into linear factors and (ii) the dimension of the
eigenspace for each A equals the multiplicity of A.

If A is diagonalizable and By is a basis for the eigenspace corresponding to A,
for each k, then the total collection of vectors in the sets B, ..., B, forms an
eigenvector basis for R".

)



Basis of Eigenvectors

& 4 . =
Express the vector 7y = [5] as a linear combination of the vectors

v = B] and ¥ = [}J and find the coordinates of & in the basis

- 10
LetP:[v;vz]andDz[o 1

A=PDP! fork=1,2,....

], and find [A*Zo] where

[A*Zo)s =

Section 5.3 Slide 13

cle

P=[11;1-1]

% first example

%D=[10;0-1]

% part 2

%D=[10;0-1/2]

% part 3

D=[20;03/2]

A=P*D*inv(P)

x0=[4;5];

s=10

format bank

for k=0:s
% convert current index to string and

create xk and coordk strings
index=string(k);
s=strcat('x',index,'=");
c=strcat('[x',index,']_B=");
% compute xk value
Xk=A"k*X0;
coordk=inv(P)*xk;
% display each xk=A"k*x0
disp(s)

disp(xk)

disp(c)

disp(coordk)

end




Basis of Eigenvectors - part 2

Let 7o = [g:l, U = B] and 75 = |:*11j| as before.

Again define P = [0} 2] but this time let D = [(1) 7?/2], and now find

[A*%)) 5 where A= PDP~!, fork=1,2,....

[A*Eo) 5 =

Section 53 Slide 14




Basis of Eigenvectors - part 3

e e [2oven caleviatordoamt
Again define P = [t} 2] but this time let D = [g 3?2], and now find

[A*Z)]5 where A= PDP~!, for k=1,2,....

[AkEo)s =

Section 5.3 Slide 15




5.3 EXERCISES

In Exercises 1 and 2, let A = PDP~" and compute A*.

voeft o3 ]

vee[2 Fo-[b 2]

1 275 o o[1/4 172 1/4
o —1||lo 1 of|14 172 -3/4
-1 oJlo o )[4 —172 14

In Exercises 3 and 4, use the factorization A = PDP~' to com- 4 105 =2
o s Rl o 6. |12 5 4|=
pute A*, where k represents an arbitrary positive integer. 0 0 s
3. [3( - 2]:[; ?][;‘) 2][_; ‘l’] 2 0 -1][5 o oJ[ 0 o 1
< o 1 2o 5 off 2 1 4
1 0 o0J[0 O 4]|-1 0 =2
4 -2 12]7_[3 472 o]f-1 4
T -1 5171 1jfo 1 1 =3 Diagonalize the matrices in Exercises 7-20, if possible. The
eigenvalues for Exercises 11-16 are as follows: (11) A = 1,2,3;
In Exercises 5 and 6, the matrix A is factored in the form PDP~'.  (12) A =2.8; (13) A =5,1; (14) A = 5.4; (15) A = 3, 1; (16)
Use the Diagonalization Theorem to find the eigenvaluesof Aand A = 2, 1. For Exercise 18, one eigenvalue is A = 5 and one
a basis for each eigenspace. eigenvector is (=2, 1,2).

1 0 5 1
SRR S
30 -1 2 3
«[2 ] w.[2 ]
-1 4 2 [4 2 2
1m (-3 4 o 12. |2 4 2
-3 1 3 2 2 4
[ 2 2 -1 [4 0 -2
13. 1 3 -1 4. |2 5 4
-1 =2 2 [0 0 5
7 4 16 [i -4 —6
155 ) 2t 5 8 16. [-1 0 -3
|2 2 -5 L 1 2 5
4 0 0 [—7 —16 4
17. |1 4 o0 18. [ 6 13 -2
L0 0 5 [ 12 16 1
(s -3 0 9 4 0 0
0 .3 1.2 0 4 0
B 1o 0 2 o 20-19 o0 2
0 0 0 2 (1 0 0

| M
vo oo b——Ad

In Exercises 21 and 22, A, B, P, and D are n x n matrices.
Mark each statement True or False. Justify each answer. (Study
Theorems 5 and 6 and the examples in this section carefully before
you try these exercises.)

21. a. A is diagonalizable if A = PDP~" for some matrix D
and some invertible matrix P.

b. If R" has a basis of eigenvectors of A, then A is diago-
nalizable.

c. A is diagonalizable if and only if A has n eigenvalues,
counting multiplicities.

d. If A is diagonalizable, then A is invertible.

22. a. A isdiagonalizable if A has n eigenvectors.
b. If A is diagonalizable, then A has n distinct eigenvalues.

c. If AP = PD,with D diagonal, then the nonzero columns
of P must be eigenvectors of A.

d. If A is invertible, then A is diagonalizable.
23. Ais a 5 x5 matrix with two eigenvalues. One eigenspace

is three-dimensional, and the other eigenspace is two-
dimensional. Is A diagonalizable? Why?



27.

29.

31.

32.

. Ais a3 x 3 matrix with two eigenvalues. Each eigenspace is

one-dimensional. Is A diagonalizable? Why?

. Ais a4 x4 matrix with three eigenvalues. One eigenspace

is one-dimensional, and one of the other eigenspaces is two-
dimensional. Is it possible that A is not diagonalizable?
Justify your answer.

. Aisa7 x 7 matrix with three eigenvalues. One eigenspace is

two-dimensional, and one of the other eigenspaces is three-
dimensional. Is it possible that A is not diagonalizable?
Justify your answer.

Show that if A is both diagonalizable and invertible, then so
is A~

. Show that if A has n linearly independent eigenvectors, then

so does A” . [Hint: Use the Diagonalization Theorem.]

A factorization A = PDP~"' is not unique. Demonstrate this
for the matrix A in Example 2. With D, = [3 (5)] use

the information in Example 2 to find a matrix P, such that
Al= P DiP

With 4 and D as in Example 2, find an invertible P, unequal
to the P in Example 2, such that A = P,DP;™".

Construct a nonzero 2 x 2 matrix that is invertible but not
diagonalizable.

Construct a nondiagonal 2 x 2 matrix that is diagonalizable
but not invertible.

[M] Diagonalize the matrices in Exercises 33-36. Use your ma-
trix program’s eigenvalue command to find the eigenvalues, and
then compute bases for the eigenspaces as in Section 5.1.

33.

3s.

-6 4 0 9 0o 13 8 4
-3 0 1 6 4 9 8 4
-1 -2 1 0 S 8 6 12 8
-4 4 0 7 0 5 0 —4

11 -6 4 —-10 —4
~3 5 =2 4 1
-8 12 -3 12 4
1 6 =2 3 -1
8 —-18 8 -14 -1
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Topics and Objectives Imaginary Numbers
Topics Recall: When calculating roots of polynomials, we can encounter square
1. Complex numbers: addition, multiplication, complex conjugate roots of negative numbers. For example:
2. Diagonalizing matrices with complex eigenvalues eI
3. Eigenvalue th
R Kl Swsons The roots of this equation are:
Learning Objectives
1. Diagonalize 2 x 2 matrices that have complex eigenvalues We usually write /=T as i (for “imaginary").
2. Use eigenvalues to determine identify the rotation and dilation of a
linear transform.
3. Apply theorems to characterize matrices with complex eigenvalues.
Motivating Question
What are the eigenvalues of a rotation matrix?
Addition and Multiplication Complex Conjugate, Absolute Value, Polar Form

The imaginary (or complex) numbers are denoted by T, where

We can conjugate complex numbers: a — bi —
€= {a+bi|abin R}

We can identify C with R% a1 bi ¢ (a,t)

The absolute value of a complex number: |a + bil =
We can add and multiply complex numbers as follows:

(2-8)+(-144) =

We can write complex numbers in polar form: a+ib = r(cos ¢+ sin )

(2-3)(-1+i) =




Complex Conjugate Properties

If 2 and y are complex numbers, ¥ € C™, it can be shown that:

* Im(a7) = 0.

Example True or false: if z and y are complex numbers, then

Euler's Formula

Suppose 21 has angle @1, and 23 has angle 6.

The product 212 has angle ¢, + ¢ and modulus |2] [u]. Easy to
remember using Euler's formula

The product 12, is

2= nz = (ja] €*)( fittoa)

Jaal 22l

Polar Form and the Complex Conjugate

Conjugation reflects points across the real axis.

Complex Numbers and Polynomials

Theorem of Algebra

Every polynomial of degree n has exactly n complex roots, counting
multiplicity.

1. If A€ Cis a root of a real polynomial p(z), then the conjugate
Xis also a oot of p(z).

2. If Xis an eigenvalue of real matrix A with eigenvector @, then X
is an eigenvalue of A with eigenvector 7.




Example

Four of the eigenvalues of a 7 x 7 matrix are —2,4 +1, —4 — i, and &
What are the other eigenvalues?

Example

The matrix in the previous example is a special case of this matrix

(o b
b’(r. a)

Calculate the eigenvalues of C and express them in polar form.

Sucionss Side 25

Example

The matrix that rotates vectors by ¢ = /4 radians about the origin, and
then scales (o dilates) vectors by r = /2, is

4| O] feoss —sing] _ 1 -1
“o r)lsing cose | T 1 1

What are the eigenvalues of A? Express them in polar form.

Diagonalization

Theorem
Let A be a real 2 x 2 matrix with a complex eigenvalue
X = a— bi (where b # 0) and associated eigenvector 7.
Then we may construct the diagonalization

A=pPCP7?
where

- a b
P=(Re? Imd) and C (b E)

Note the following.
o Cis referred to as a rotation dilation matrix, because it is the
composition of a rotation by ¢ and dilation by r.
o The proof for why the columns of P are always linearly independent
is a bit long, it goes beyond the scope of this course.

Swcinss a0



Example

Find the complex eij and an i complex ei for
each eigenvalue for the matrix.
1 -2
A= (1 3 )
Section'55 Side 29
g | g |
5.5 EXERCISES
Let each matrix in Exercises 1-6 act on C2. Find the eigenvalues 15. [ 1 5:| 16. [ 5 —2]
and a basis for each eigenspace in C2. -2 3 1 3
1 =2 5 =5
L [ ] 2 [ ] 1 -8 i) =i
13 11 7.4 =22 15 4 .
1 5 5 =2
3-[ ] 4-[ ] 1.52 -7 —1.64 —2.4
-2 3 1 3 : 1 5 5
e [ .56 .4] 20. [ 1.92 2.2]
5 0 1 6 4 3
-8 4 “ill=3 4 21. InExample 2, solve the first equation in (2) for x, in terms of

In Exercises 7-12, use Example 6 to list the eigenvalues of A.
In each case, the transformation X + AX is the composition of
a rotation and a scaling. Give the angle ¢ of the rotation, where
—n < ¢ < m,and give the scale factor r.
7. [V3 - sallleE 2
i R WV L3 v3

(4 _pz] w3
w[d 4] [l

In Exercises 13-20, find an invertible matrix P and a matrix

C of the form such that the given matrix has the

a
b
form A = PCP~"'. For Exercises 13-16, use information from
Exercises 1-4.

o]

5 =5
14. [l 1

X1, and from that produce the eigenvector y = [ 2 z ]
-1+2i

for the matrix A. Show that this y is a (complex) multiple of
the vector v, used in Example 2.

22. Let A be a complex (or real) n x n matrix, and let X in C” be

an ei ponding to an eig lue A in C. Show

that for each nonzero complex scalar y, the vector ux is an

eigenvector of A.

Chapter 7 will focus on matrices A with the property that A” = A.
Exercises 23 and 24 show that every eigenvalue of such a matrix
is necessarily real.

23. Let Abeann x n real matrix with the property that A7 = A4,
let x be any vector in C”, and let ¢ = X'Ax. The equalities
below show that ¢ is a real number by verifying thatg = g.
Give a reason for each step.

7 =%X'4x = x"Ax = x'AxX = (X'Ax) ' =xATx =¢q
(a) (b) (©) (d) (e)

3
Thomas' Calculus Early Transcendentals and Linear Algebra and Its by

2018 by Pearson Education, Inc. All Rights Reserved. Pearson Custom Edition.
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Section 6.1 : Inner Product, Length, and

Orthogonality

Chapter 6: Orthogonality and Least Squares

Math 1554 Linear Algebra

Topics and Objectives

Topics
1. Dot product of vectors
2. Magnitude of vectors, and distances in R*
3. Orthogonal vectors and complements
4. Angles between vectors

Learning Objectives
1. Compute (a) dot product of two vectors, (b) length (or magnitude)
of a vector, (<) distance between two points in K, and (d) angles
between vectors.
2. Apply theorems related to orthogonal complements, and their
relationships to Row and Null space, to characterize vectors and
linear systems.

Motivating Question
For a matrix A, which vectors are orthogonal to all the rows of A? To
the columns of A?

THEOREM 1 Let u, v, and w be vectors in R”, and let ¢ be a scalar. Then

a. u-v=v-u
b. (u+v)w=uw+v-w
c. (cu)-v=c(u-v) =u-(cv)

The Dot Product

8

10

1

12

d. ueu>0, andu-u=0ifandonlyifu=0

10/9 - 10/13 Break

10/16 - 10/20 53

10/23 - 10/27 6162

10/30 - 11/3 64

11/6 -11/10 66
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Exam 3, Review
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Properties of the Dot Product

53

61

63

6.5

PageRank

The dot product is a special form of matrix multiplication, s it inherits

linear proper

‘Theorem (Basic Identities of Dot Product)

Let i, be three vectors in R”, and ¢ € R

1 (Symmetry) -

2. (Linear in each vector) (i

3. (Scalars) (cil) -

4 (Positivity) ii i > 0, and the dot product equals

+a




Let @, be two vectors in R™ with ||@|| = 5, |7 = v/3, and @ -7 = —1.
Compute the value of [|i + .

The length of a vector @ € R" is
@l =V -@=/ui+uf+ - +u}

Example: the length of the vector O? is

V12 +32+22 =V14

1
Setion61 e 277 Setion61 Side 278

DEFINITION The length (or norm) of v is the nonnegative scalar ||v|| defined by

vl = v¥v= v} + v} +---+v2 and |V




Length of Vectors and Unit Vectors

Note: for any vector 7 and scalar ¢, the length of 7 is
lleall =
Definition

If 7 € R™ has length one, we say that it is a unit vector.

Example: Let W be a subspace of R* spanned by

a) Construct a unit vector i in the same direction as ¥

b) Construct a basis for W using unit vectors.

Section 61 Side 279

DEFINITION  Foruand v in ", the distance between u and v, written as dist(u,v), is the
length of the vector u — v. That is,

dist(u,v) = u—v]|

Distance in R"

Definition

For i, 7 € R™, the distance between i and ¥ is given by the formula

Example: Compute the distance from @ = (Z) and 7= (g)

X

l

Secton 61 Side 280

llu—vi|

FIGURE 4 The distance between u and v is
the length of u — v.



Orthogonality Example

Sketch the subspace spanned by the set of all vectors i that are
Definition (Orthogonal Vectors) :
Two vectors @ and 4 are orthogonal if - @
is equivalent to:

zy

orthogonal to 7= (;

1+ @* =

<

Note: The zero vector is orthogonal to every vector. But we usually only
mean non-zero vectors,
a

Secton 61 Side 281 Section 61 Side 222

Orthogonal Compliments Example

1
—1 |. Then the space L+
Let W be a subspace of R". A vector 7 € R" is said to be 2

orthogonal to W if 7 is orthogonal to each vector in . is 2 plane. Construct an equation of the plane L

Line L is a subspace of R spanned by

z

The set of all vectors orthogonal to V' is a subspace, the orthog-
onal compliment of W, or W' or ‘W perp.’

wt

Can also visualise line and plane with CalcPlot3D: web.monroecc edu/calcNSF



RowA Example

Describe the Null(4) in terms of an orthogonal subspace.
Definition
RowA is the space spanned by the rows of matrix A. A vector Z is in Null A if and only if
L AE=
We can show that
o dim(Row(A)) = dim(Col(4)) 2. Thismeansthat #is[ |toeach row of A.

* a basis for RowA is the pivot rows of A

4. The dimension of Row A plus the dimension of Null A equals

Additional Example (if time permits)

Theorem (The Four

For any A € R™*", the orthogonal complement of Row A is P
Null 4, and the orthogonal complement of Col A is Null A7 A has the LU factorization:
100\/10 2 0
The idea behind this theorem is described in the diagram below. A=LU=|1 1 0){0 1 -1 2
041/\0o0 0 0

a) Construct a basis for (RowA)*
b) Construct a basis for (Cold)*

Beued) Hint: it is not necessary to compute A. Recall that AT = UT L, matrix
Col(4) L7 is invertible, and U™ has a non-empty nullspace.
R™ R™
Null(4) Null(AT)
Soons1 sigem7 Socoms1 Staoms
THEOREM 3 Let A be an m x n matrix. The orthogonal complement of the row space of 4 is
the null space of A, and the orthogonal complement of the column space of A is o SO
the null space of A”:
(Row A)X =NulA and (Col A)* = NulA” T e
oj\ J
~ N"Lq V\\\\/?ﬁ
A L
go¥ ol 4

FIGURE 8 The fundamental subspaces determined
by an m x n matrix A.



Angles

Looking Ahead - Projections

Suppose we want to find the closed vector in Span{b} to @.

@-b=|a||b|cosf. Thus, if @-b =0, then:

 Gandfor b are

o @and b are

vectors, or

For example, consider the vectors below.

- Span{b}

o Later in this Chapter, we will make connections between dot

products and projections.

o Proj are also used
Secimo1 Stde 20 Secion1 St 00
Compute the quantities in Exercises 1-8 using the vectors 0 —4
3 6 14. Find the distance betweenu = | =5 [andz= | —1 |.
B T P I ) B : s
-5 3

1. ueu,vou and o
uu
i

3 —w
wew

5. (%)v

7. lwll

In Exercises 9-12, find a unit vector in the direction of the given

vector.
-30
»[%]

7/4
1. I: 1 /2]
1

X-W
2. wew,xew,and —
wew

- (3]

13. Find the distance between x = [_‘g] andy = [:;

Determine which pairs of vectors in Exercises 15-18 are orthog-

onal.

e[ 2] (3]

3 -4 -3 1
2 1 7 -8
ou=| Z|v=|_,| By=| jlz=]T5
0 6 0 -7
In Exercises 19 and 20, all vectors are in R”. Mark cach statement
True or False. Justify each answer.
19. a. vev = vl
b. For any scalar ¢, u- (ev) = c(u-v).
c. If the distance from u to v equals the distance from u to
—v, then u and v are orthogonal .
d. For a square matrix A, vectors in Col A are orthogonal to
vectors in Nul A.

21.

22.

B

S

26.

27

B

calculus courses.
If vectors vi,...,v, span a subspace W and if x is
orthogonal to each v for j = 1..... p.thenxisin W,
20. a. u-v—v-u=0.

b. For any scalar ¢, |lcv| = ¢||v]|.

c. Ifxis orthogonal to every vector in a subspace W, then x
isin W+,

d. If |lull®> + ||v|]* = |lu + v||*, then u and v are orthogonal.

e. Foranm x n matrix A, vectors in the null space of A are
orthogonal to vectors in the row space of A.

Use the transpose definition of the inner product to verify
parts (b) and (c¢) of Theorem 1. Mention the appropriate facts
from Chapter 2.
Let u = (u;,u>,u3). Explain why u-u>0. When is
u-u=0?
2 -7

Letu=|-5|andv=| —4

-1 6
u-v, |lul?, |v||?, and |lu + v||>. Do not use the Pythagorean
Theorem.

. Compute and compare

Verify the parallelogram law for vectors u and v in R":

flu + vIP + flu = v]* = 2[ull® + 2|Iv|?

[Z] Describe the set H of vectors [’;
orthogonal to v. [Hint: Consider v =0and v # 0.
5

—6

d
u-x = 0. What theorem in Chapter 4 can be used to show that
W is a subspace of R*? Describe W in geometric language.

Letv= ]malm
|

Letu = ,and let W be the set of all x in R? such that

Suppose a vector y is orthogonal to vectors u and v. Show
that y is orthogonal to the vector u + v.

Suppose y is orthogonal to u and v. Show that y is orthogonal
to every w in Span {u, v}. [Hint: An arbitrary w in Span {u, v}
has the form w = ¢;u + ¢,v. Show that y is orthogonal to
such a vector w.]

Let W = Span {v,,...,v,}. Show that if x is orthogonal to

eachv;, for I < j < p,then x is orthogonal to every vector

inW.




