

Section 2.9: Dimension and Rank

Chapter 2: Matrix Algebra

Math 1554 Linear Algebra

Topics and Objectives

Topics

We will cover these topics in this section.

- . Coordinates, relative to a basis.
- 2. Dimension of a subspace.
- 3. The Rank of a matrix

Objectives

For the topics covered in this section, students are expected to be able to do the following.

- 1. Calculate the coordinates of a vector in a given basis.
- Characterize a subspace using the concept of dimension (or cardinality).
- Characterize a matrix using the concepts of rank, column space, null space.
- Apply the Rank, Basis, and Matrix Invertibility theorems to describe matrices and subspaces.

Slide 163 Section 2.9

Section 2.9: Dimension and Rank

Chapter 2 : Matrix Algebra Math 1554 Linear Algebra

Topics and Objectives

- Topics
 We will cover these topics in this section.

 1. Coordinates, relative to a basis.
- Dimension of a subspace. 3. The Rank of a matrix

ObjectivesFor the topics covered in this section, students are expected to be able to do the following.

- 1. Calculate the coordinates of a vector in a given basis.
- Characterize a subspace using the concept of dimension (or cardinality).
- Characterize a matrix using the concepts of rank, column space, null space.
- 4. Apply the Rank, Basis, and Matrix Invertibility theorems to describe matrices and subspaces.

Course Schedule

Wee	ek Dates	Mon Lecture	Tue Studio	Wed Lecture	Thu Studio	Fri Lecture
1	8/21 - 8/25	1.1	WS1.1	1.2	W51.2	1.3
2	8/28 - 9/1	1.4	WS1.3,1.4	1.5	W51.5	1.7
3	9/4 - 9/8	Break	W\$1.7	1.8	W51.8	1.9
4	9/11 - 9/15	2.1	WS1.9,2.1	Exam 1, Review	Cancelled	2.2
5	9/18 - 9/22	2.3,2.4	W\$2.2.2.3	2.5	W52.4,2.5	2.8
6	9/25 - 9/29	2.9	WS2.8,2.9	3.1,3.2	W53.1,3.2	3.3
7	10/2 - 10/6	4.9	W\$3.3,4.9	5.1,5.2	WS5.1,5.2	5.2
8	10/9 - 10/13	Break	Break	Exam 2, Review	Cancelled	5.3
9	10/16 - 10/20	5.3	WS5.3	5.5	WS5.5	6.1
10	10/23 - 10/27	6.1,6.2	WS6.1	6.2	W56.2	6.3
11	10/30 - 11/3	6.4	W\$6.3,6.4	6.4,6.5	WS6.4,6.5	6.5
12	11/6 - 11/10	6.6	WS6.5,6.6	Exam 3, Review	Cancelled	PageRank
13	11/13 - 11/17	7.1	WSPageRank	7.2	WS7.1,7.2	7.3
14	11/20 - 11/24	7.3,7.4	W\$7.2,7.3	Break	Break	Break

Choice of Basis

Key idea: There are many possible choices of basis for a subspace. Our choice can give us dramatically different properties.

Example: sketch $\vec{b}_1 + \vec{b}_2$ for the two different coordinate systems below.

Coordinates

Definition

 (\vec{b}_p) be a basis for a subspace H. If \vec{x} is in H, then Let $\mathcal{B} = \{\vec{b}_1$ relative $\mathcal B$ are the weights (scalars) c_1,\dots,c_p so that

$$\vec{x} = c_1 \vec{b}_1 + \cdots + c_p \vec{b}_p$$

is the coordinate vector of \vec{x} relative to \mathcal{B} , or the \mathcal{B} -coordinate vector of \vec{x}

16. +1

Example

If possible, give an example of a 2×3 matrix A, in reduced echelon form, with the given properties.

- a) rank(A) = 3
 - NP

- c) $\dim(\operatorname{Null}(A)) = 2$

d) $Null A = \{0\}$

NP

EXAMPLE 1 Let
$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 6 \\ 2 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} 3 \\ 12 \\ 7 \end{bmatrix}$, and $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$. Then \mathcal{B} is a basis for $H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$ because \mathbf{v}_1 and \mathbf{v}_2 are linearly independent. Deter-

 \mathcal{B} is a basis for $H = \operatorname{Span} \{ \mathbf{v}_1, \mathbf{v}_2 \}$ because \mathbf{v}_1 and \mathbf{v}_2 are linearly independent. Determine if x is in H, and if it is, find the coordinate vector of x relative to \mathcal{B} .

$$2\begin{bmatrix}3\\6\\7\end{bmatrix}+3\begin{bmatrix}-1\\7\end{bmatrix}=\begin{bmatrix}3\\12\\7\end{bmatrix}$$

FIGURE 1 A coordinate system on a plane

H in \mathbb{R}^3 .

it worked

THEOREM

The Invertible Matrix Theorem (continued)

Let A be an $n \times n$ matrix. Then the following statements are each equivalent to the statement that A is an invertible matrix.

m. The columns of A form a basis of \mathbb{R}^n .

n.
$$\operatorname{Col} A = \mathbb{R}^n$$

o.
$$\dim \operatorname{Col} A = n$$

p. rank
$$A = n$$

q. Nul
$$A = \{0\}$$

r.
$$\dim \text{Nul } A = 0$$

2.9 EXERCISES

In Exercises 1 and 2, find the vector \mathbf{x} determined by the given coordinate vector $[\mathbf{x}]_{\mathcal{B}}$ and the given basis \mathcal{B} . Illustrate your answer with a figure, as in the solution of Practice Problem 2.

1.
$$\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \end{bmatrix} \right\}, [\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

2.
$$\mathcal{B} = \left\{ \begin{bmatrix} -2\\1 \end{bmatrix}, \begin{bmatrix} 3\\1 \end{bmatrix} \right\}, [\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} -1\\3 \end{bmatrix}$$

In Exercises 3–6, the vector \mathbf{x} is in a subspace H with a basis $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$. Find the \mathcal{B} -coordinate vector of \mathbf{x} .

3.
$$\mathbf{b}_1 = \begin{bmatrix} 1 \\ -4 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} -2 \\ 7 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} -3 \\ 7 \end{bmatrix}$$

4.
$$\mathbf{b}_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} -3 \\ 5 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} -7 \\ 5 \end{bmatrix}$$

5.
$$\mathbf{b}_1 = \begin{bmatrix} 1 \\ 5 \\ -3 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} -3 \\ -7 \\ 5 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} 4 \\ 10 \\ -7 \end{bmatrix}$$

5.
$$\mathbf{b}_1 = \begin{bmatrix} -3\\1\\-4 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} 7\\5\\-6 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} 11\\0\\7 \end{bmatrix}$$

160 CHAPTER 2 Matrix Algebra

7. Let
$$\mathbf{b}_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
, $\mathbf{b}_2 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 7 \\ -2 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$, and $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$. Use the figure to estimate $[\mathbf{w}]_{\mathcal{B}}$ and $[\mathbf{s}]_{\mathcal{B}}$. Confirm your estimate of $[\mathbf{x}]_{\mathcal{B}}$ by using it and $\{\mathbf{b}_1, \mathbf{b}_2\}$ to

8. Let
$$\mathbf{b}_1 = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$
, $\mathbf{b}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$.

$$\mathbf{z} = \begin{bmatrix} -1 \\ -2.5 \end{bmatrix}$$
, and $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$. Use the figure to estimate $[\mathbf{x}]_{\mathcal{B}}, [\mathbf{y}]_{\mathcal{B}}$, and $[\mathbf{z}]_{\mathcal{B}}$. Confirm your estimates of $[\mathbf{y}]_{\mathcal{B}}$ and $[\mathbf{z}]_{\mathcal{B}}$ by using them and $\{\mathbf{b}_1, \mathbf{b}_2\}$ to compute \mathbf{y} and \mathbf{z} .

Exercises 9–12 display a matrix A and an echelon form of A. Find bases for Col A and Nul A, and then state the dimensions of these subspaces.

$$\mathbf{9.} \ \ A = \begin{bmatrix} 1 & -3 & 2 & -4 \\ -3 & 9 & -1 & 5 \\ 2 & -6 & 4 & -3 \\ -4 & 12 & 2 & 7 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 2 & -4 \\ 0 & 0 & 5 & -7 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{0.} \ A = \begin{bmatrix} 1 & -2 & 9 & 5 & 4 \\ 1 & -1 & 6 & 5 & -3 \\ -2 & 0 & -6 & 1 & -2 \\ 4 & 1 & 9 & 1 & -9 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & -2 & 9 & 5 & 4 \\ 0 & 1 & -3 & 0 & -7 \\ 0 & 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 1 & -2 \end{bmatrix}$$

11.
$$A = \begin{bmatrix} 1 & 2 & -5 & 0 & -1 \\ 2 & 5 & -8 & 4 & 3 \\ -3 & -9 & 9 & -7 & -2 \\ 3 & 10 & -7 & 11 & 7 \end{bmatrix}$$

2.
$$A = \begin{bmatrix} 1 & 2 & -4 & 3 & 3 \\ 5 & 10 & -9 & -7 & 8 \\ 4 & 8 & -9 & -2 & 7 \\ -2 & -4 & 5 & 0 & -6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & -4 & 3 & 3 \\ 0 & 0 & 1 & -2 & 0 \end{bmatrix}$$

In Exercises 13 and 14, find a basis for the subspace spanned by the given vectors. What is the dimension of the subspace?

13.
$$\begin{bmatrix} -3 \\ -3 \\ 2 \\ -4 \end{bmatrix}, \begin{bmatrix} -3 \\ 9 \\ -6 \\ 12 \end{bmatrix}, \begin{bmatrix} -4 \\ 4 \\ 2 \end{bmatrix}, \begin{bmatrix} -4 \\ 5 \\ -3 \\ 7 \end{bmatrix}$$

14.
$$\begin{bmatrix} 1 \\ -1 \\ -2 \\ -2 \end{bmatrix}, \begin{bmatrix} 2 \\ -3 \\ -1 \\ 6 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ -6 \\ 8 \end{bmatrix}, \begin{bmatrix} -1 \\ 4 \\ -7 \\ -7 \end{bmatrix}, \begin{bmatrix} 3 \\ -8 \\ 9 \\ -5 \end{bmatrix}$$

15. Suppose a 3×5 matrix A has three pivot columns. Is Col $A = \mathbb{R}^3$? Is Nul $A = \mathbb{R}^2$? Explain your answers.

16. Suppose a 4×7 matrix *A* has three pivot columns. Is Col $A = \mathbb{R}^{3}$? What is the dimension of Nul *A*? Explain your answers.

In Exercises 17 and 18, mark each statement True or False. Justify each answer. Here A is an $m \times n$ matrix.

- 17. a. If $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is a basis for a subspace H and if $\mathbf{x} = c_1\mathbf{v}_1 + \dots + c_p\mathbf{v}_p$, then c_1, \dots, c_p are the coordinates of \mathbf{x} relative to the basis \mathcal{B} .
 - b. Each line in \mathbb{R}^n is a one-dimensional subspace of \mathbb{R}^n .
 - c. The dimension of Col A is the number of pivot columns
 - The dimensions of Col A and Nul A add up to the number of columns of A.
 - e. If a set of p vectors spans a p-dimensional subspace H of Rⁿ, then these vectors form a basis for H.
- 18. a. If B is a basis for a subspace H, then each vector in H can be written in only one way as a linear combination of the vectors in B.
 - b. If B = {v₁,..., v_p} is a basis for a subspace H of Rⁿ, then the correspondence x → [x]_B makes H look and act the same as R^p.

- c. The dimension of Nul A is the number of variables in the equation $A\mathbf{x} = \mathbf{0}$.
- d. The dimension of the column space of A is rank A.
- e. If H is a p-dimensional subspace of \mathbb{R}^n , then a linearly independent set of p vectors in H is a basis for H.

In Exercises 19-24, justify each answer or construction.

- **19.** If the subspace of all solutions of $A\mathbf{x} = \mathbf{0}$ has a basis consisting of three vectors and if A is a 5×7 matrix, what is the rank of A?
- **20.** What is the rank of a 4 × 5 matrix whose null space is three-dimensional?
- **21.** If the rank of a 7×6 matrix A is 4, what is the dimension of the solution space of $A\mathbf{x} = \mathbf{0}$?
- 22. Show that a set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_5\}$ in \mathbb{R}^n is linearly dependent when dim Span $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_5\} = 4$.
- **23.** If possible, construct a 3×4 matrix A such that dim Nul A = 2 and dim Col A = 2.
- 24. Construct a 4×3 matrix with rank 1.
- 25. Let A be an n x p matrix whose column space is p-dimensional. Explain why the columns of A must be linearly independent.
- **26.** Suppose columns 1, 3, 5, and 6 of a matrix *A* are linearly independent (but are not necessarily pivot columns) and the rank of *A* is 4. Explain why the four columns mentioned must be a basis for the column space of *A*.

Section 3.1: Introduction to Determinants

Chapter 3: Determinants

Math 1554 Linear Algebra

Topics and Objectives

Topics

We will cover these topics in this section.

- 1. The definition and computation of a determinant
- 2. The determinant of triangular matrices

Objectives

For the topics covered in this section, students are expected to be able to do the following.

- 1. Compute determinants of $n \times n$ matrices using a cofactor expansion.
- Apply theorems to compute determinants of matrices that have particular structures.

Section 3.1 Slide 172

Section 3.1: Introduction to Determinants

Chapter 3 : Determinants Math 1554 Linear Algebra

Section 3.1 Slide 172

A Definition of the Determinant

Suppose A is $n \times n$ and has elements a_{ij} .

- $1. \ \ {\rm If} \ n=1, \ A=[a_{11}] \mbox{, and has determinant } \det A=a_{11}.$
- 2. Inductive case: for n > 1,

 $\det A = a_{11} \det A_{11} - a_{12} \det A_{12} + \dots + (-1)^{1+n} a_{1n} \det A_{1n}$

where A_{ij} is the submatrix obtained by eliminating row i and column j of A.

ection 3.1 Slide 174

Topics and Objectives

Topics

We will cover these topics in this section.

- 1. The definition and computation of a determinant
- 2. The determinant of triangular matrices

Objectives

For the topics covered in this section, students are expected to be able to do the following.

- $1. \ \,$ Compute determinants of $n\times n$ matrices using a cofactor expansion.
- 2. Apply theorems to compute determinants of matrices that have particular structures.

et	A=	4)					
	8	10/9 - 10/13	Break	Break	Exam 2, Review	Cancelled	5.3
	7	10/2 - 10/6	4.9	WS3.3,4.9	5.1,5.2	WS5.1,5.2	5.2
	6	9/25 - 9/29	2.9	WS2.8,2.9	3.1,3.2	WS3.1,3.2	3.3
Seci	5	9/18 - 9/22	2.3,2.4	WS2.2,2.3	2.5	WS2.4,2.5	2.8

Example 1

$$= 5(0) + 4(0) - 2(-1) = 0 + 0 + 2$$

$$= 2$$

Theorem

The determinant of a matrix
$$A$$
 can be computed down any row or column of the matrix. For instance, down the j^{th} column, the determinant is
$$\det A = a_{1j}C_{1j} + a_{2j}C_{2j} + \cdots + a_{nj}C_{nj}.$$

$$= 5 \cdot \left(0 - 0 + 3 \right) \begin{vmatrix} 1 & 2 \\ -1 & 1 \end{vmatrix}$$
Section 3.1 Sold 279

Triangular Matrices

Theorem

If A is a triangular matrix then $\det A = a_{11}a_{22}a_{33}\cdots a_{nn}$

Example 4
Compute the determinant of the matrix. Empty elements are zero

$$= 1.2.50 | -0.40$$

Computational Efficiency

Note that computation of a co-factor expansion for an $N\times N$ matrix requires roughly N! multiplications.

- A 10×10 matrix requires roughly 10! = 3.6 million multiplications A 20×20 matrix requires $20! \approx 2.4 \times 10^{18}$ multiplications
- This doesn't mean that determinants are not useful.
- . We will explore other methods that further the efficiency of their
- Determinants are very useful in multivariable calculus for solving certain integration problems.

10 X 10

Compute the determinants in Exercises 1–8 using a cofactor expansion across the first row. In Exercises 1–4, also compute the determinant by a cofactor expansion down the second column.

1.
$$\begin{vmatrix} 3 & 0 & 4 \\ 2 & 3 & 2 \\ 0 & 5 & -1 \end{vmatrix}$$
 2. $\begin{vmatrix} 0 & 4 & 1 \\ 5 & -3 & 0 \\ 2 & 3 & 1 \end{vmatrix}$

3.
$$\begin{vmatrix} 2 & -2 & 3 \\ 3 & 1 & 2 \\ 1 & 3 & -1 \end{vmatrix}$$
 4. $\begin{vmatrix} 1 & 2 & 4 \\ 3 & 1 & 1 \\ 2 & 4 & 2 \end{vmatrix}$
5. $\begin{vmatrix} 2 & 3 & -3 \\ 4 & 0 & 3 \end{vmatrix}$ 6. $\begin{vmatrix} 5 & -2 & 2 \\ 0 & 3 & -3 \end{vmatrix}$

170 CHAPTER 3 Determinants

Compute the determinants in Exercises 9–14 by cofactor expansions. At each step, choose a row or column that involves the least amount of computation.

9.
$$\begin{vmatrix} 4 & 0 & 0 & 5 \\ 1 & 7 & 2 & -5 \\ 3 & 0 & 0 & 0 \\ 8 & 3 & 1 & 7 \end{vmatrix}$$
10.
$$\begin{vmatrix} 1 & -2 & 5 & 2 \\ 0 & 0 & 3 & 0 \\ 2 & -4 & -3 & 5 \\ 2 & 0 & 3 & 5 \end{vmatrix}$$
11.
$$\begin{vmatrix} 3 & 5 & -6 & 4 \\ 0 & -2 & 3 & -3 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 3 \end{vmatrix}$$
12.
$$\begin{vmatrix} 3 & 0 & 0 & 0 \\ 7 & -2 & 0 & 0 \\ 2 & 6 & 3 & 0 \\ 3 & -8 & 4 & -3 \end{vmatrix}$$
13.
$$\begin{vmatrix} 4 & 0 & -7 & 3 & -5 \\ 0 & 0 & 2 & 0 & 0 \\ 7 & 3 & -6 & 4 & -8 \\ 5 & 0 & 5 & 2 & -3 \\ 0 & 0 & 9 & -1 & 2 \end{vmatrix}$$
14.
$$\begin{vmatrix} 6 & 3 & 2 & 4 & 0 \\ 9 & 0 & -4 & 1 & 0 \\ 4 & 2 & 3 & 2 & 0 \end{vmatrix}$$
14.
$$\begin{vmatrix} 8 & -5 & 6 & 7 & 1 \\ 2 & 0 & 0 & 0 & 0 \\ 4 & 2 & 3 & 2 & 0 \end{vmatrix}$$

The expansion of a 3×3 determinant can be remembered by the following device. Write a second copy of the first two columns to the right of the matrix, and compute the determinant by multiplying entries on six diagonals:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{31} & a_{32} \\ \end{bmatrix} \begin{array}{c} a_{21} & a_{22} \\ a_{31} & a_{32} \\ \end{array} \begin{array}{c} a_{31} & a_{32} \\ \end{array}$$

Add the downward diagonal products and subtract the upward products. Use this method to compute the determinants in Exercises 15–18. Warning: This trick does not generalize in any reasonable way to 4 x 4 or larger matrices.

15.
$$\begin{vmatrix} 1 & 0 & 4 \\ 2 & 3 & 2 \\ 0 & 5 & -2 \end{vmatrix}$$
 16. $\begin{vmatrix} 0 & 3 & 1 \\ 4 & -5 & 0 \\ 3 & 4 & 1 \end{vmatrix}$
17. $\begin{vmatrix} 2 & -3 & 3 \\ 3 & 2 & 2 \\ 1 & 3 & -1 \end{vmatrix}$ 18. $\begin{vmatrix} 1 & 3 & 4 \\ 2 & 3 & 1 \\ 3 & 3 & 2 \end{vmatrix}$

In Exercises 19–24, explore the effect of an elementary row operation on the determinant of a matrix. In each case, state the row operation and describe how it affects the determinant.

19.
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, $\begin{bmatrix} c & d \\ a & b \end{bmatrix}$

20.
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, $\begin{bmatrix} a+kc & b+kd \\ c & d \end{bmatrix}$

21.
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, $\begin{bmatrix} a & b \\ kc & kd \end{bmatrix}$

22.
$$\begin{bmatrix} 3 & 2 \\ 5 & 4 \end{bmatrix}, \begin{bmatrix} 3 & 2 \\ 5+3k & 4+2k \end{bmatrix}$$

23.
$$\begin{bmatrix} a & b & c \\ 3 & 2 & 1 \\ 4 & 5 & 6 \end{bmatrix}, \begin{bmatrix} 3 & 2 & 1 \\ a & b & c \\ 4 & 5 & 6 \end{bmatrix}$$

24.
$$\begin{bmatrix} 1 & 0 & 1 \\ -3 & 4 & -4 \\ 2 & -3 & 1 \end{bmatrix}, \begin{bmatrix} k & 0 & k \\ -3 & 4 & -4 \\ 2 & -3 & 1 \end{bmatrix}$$

Compute the determinants of the elementary matrices given in Exercises 25–30. (See Section 2.2.)

$$25. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & k & 1 \end{bmatrix} \qquad 26. \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$27. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ k & 0 & 1 \end{bmatrix} \qquad 28. \begin{bmatrix} k & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$29. \begin{bmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad 30. \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Use Exercises 25-28 to answer the questions in Exercises 31 and 32. Give reasons for your answers.

- 31. What is the determinant of an elementary row replacement matrix?
- **32.** What is the determinant of an elementary scaling matrix with *k* on the diagonal?

In Exercises 33–36, verify that det $EA = (\det E)(\det A)$, where E is the elementary matrix shown and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

33.
$$\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$$
 34.
$$\begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$$
 35.
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 36.
$$\begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix}$$

37. Let
$$A = \begin{bmatrix} 3 & 1 \\ 4 & 2 \end{bmatrix}$$
. Write 5A. Is det 5A = 5 det A?

38. Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 and let k be a scalar. Find a formula that relates det kA to k and det A .

In Exercises 39 and 40, A is an $n \times n$ matrix. Mark each statement True or False. Justify each answer.

- **39.** a. An $n \times n$ determinant is defined by determinants of $(n-1) \times (n-1)$ submatrices.
 - b. The (i, j)-cofactor of a matrix A is the matrix A_{ij} obtained by deleting from A its ith row and j th column.

Section 3.2: Properties of the Determinant

Chapter 3: Determinants

Math 1554 Linear Algebra

"A problem isn't finished just because you've found the right answer."

- Yōko Ogawa

We have a method for computing determinants, but without some of the strategies we explore in this section, the algorithm can be very inefficient.

Topics and Objectives

Topics

We will cover these topics in this section.

 The relationships between row reductions, the invertibility of a matrix, and determinants.

Objectives

For the topics covered in this section, students are expected to be able to do the following.

- Apply properties of determinants (related to row reductions, transpose, and matrix products) to compute determinants.
- Use determinants to determine whether a square matrix is invertible.

on 3.2 Slide 182 Section 3.2 Slide 183

Section 3.2: Properties of the Determinant

Chapter 3 : Determinants

Math 1554 Linear Algebra

"A problem isn't finished just because you've found the right answer. - Yōko Ogawa

We have a method for computing determinants, but without some of the strategies we explore in this section, the algorithm can be very inefficient.

Topics and Objectives

Topics

We will cover these topics in this section.

· The relationships between row reductions, the invertibility of a matrix, and determinants.

Objectives

For the topics covered in this section, students are expected to be able to

- 1. Apply properties of determinants (related to row reductions, transpose, and matrix products) to compute determinants.
- 2. Use determinants to determine whether a square matrix is invertible.

						14450 405	0.0
	5	9/18 - 9/22	2.3,2.4	WS2.2,2.3	2.5	WS2.4,2.5	2.8
5							
	6	9/25 - 9/29	2.9	WS2.8,2.9	3.1,3.2	WS3.1,3.2	3.3
	_					14155 4 5 0	5.2
	7	10/2 - 10/6	4.9	WS3.3,4.9	5.1,5.2	WS5.1,5.2	5.2
		10/0 10/10	D 1	D 1	From 2 Position	Consulted	5.3
	8	10/9 - 10/13	Break	Break	Exam 2, Review	Cancelled	5.3

Row Operations

- Row operations give us a more efficient v

eorem: Row Operations and the Dete

- Let A be a square matrix.

 1. If a multiple of a row of A is added to another row to produce B, then $\det B = \det A$.
- 2. If two rows are interchanged to produce B, then $\det B = \det A$.
- 3. If one row of A is multiplied by a scalar k to prod B, then $\det B = k \det A$.

$$\begin{bmatrix} 1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0 \end{bmatrix} \sim \begin{cases} 27 + 6 & 0 & 0 & -5 \\ 2 & 2 & 4 & 0 & 3 & 2 \end{cases} .$$

det (E4 5 E2 E1 A) = det U

Let (E4) det(E2) det E1 det A = Jet U

Invertibility

Example 2 Compute the determinant

 $\begin{vmatrix} 0 & 1 & 2 & -1 \\ 2 & 5 & -7 & 3 \\ 0 & 3 & 6 & 2 \\ -2 & -5 & 4 & 2 \end{vmatrix}$

Important practical implication: If A is reduced to echelomform, by r interchanges of rows and columns, then $\mathcal{M} = \begin{cases} (-1)^r \times (\text{product of pivots}) & \text{when } A \text{ is invertible when } A \text{ is singular.} \end{cases}$

P. Let A \$ 0

THEOREM 3

Row Operations

Let A be a square matrix.

- a. If a multiple of one row of A is added to another row to produce a matrix B, then $\det B = \det A$.
- b. If two rows of A are interchanged to produce B, then $\det B = -\det A$.
- c. If one row of A is multiplied by k to produce B, then $\det B = k \cdot \det A$.

THEOREM 4

A square matrix A is invertible if and only if det $A \neq 0$.

THEOREM 6

Multiplicative Property

If A and B are $n \times n$ matrices, then $\det AB = (\det A)(\det B)$.

$$U = \begin{bmatrix} \blacksquare & * & * & * \\ 0 & \blacksquare & * & * \\ 0 & 0 & \blacksquare & * \\ 0 & 0 & 0 & \blacksquare \end{bmatrix}$$

$$\det U \neq 0$$

$$U = \begin{bmatrix} \blacksquare & * & * & * \\ 0 & \blacksquare & * & * \\ 0 & 0 & 0 & \blacksquare \\ 0 & 0 & 0 & 0 \\ \det U = 0 \end{bmatrix}$$

FIGURE 1

Typical echelon forms of square matrices.

Properties of the Determinant

For any square matrices \boldsymbol{A} and \boldsymbol{B} , we can show the following

 $\det A = \det A^T$.

A is invertible if and only if $\det A \neq 0$. $\det(AB) = \det A \cdot \det B$.

Additional Example (if time permits)

Use a determinant to find all values of λ such that matrix ${\cal C}$ is not invertible.

mpule det(
$$\bigcirc$$
)

$$C = \begin{pmatrix} 5 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} - \lambda J_3 \quad \text{when } \lambda J_3 \quad \text{math}$$

$$C = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \end{pmatrix}$$

$$\det C = (5-\lambda) \left(\begin{array}{c} \lambda^2 - 1 \end{array} \right)$$

Additional Example (if time permits)

Determine the value of

$$\det A = \det \left(\begin{pmatrix} 0 & 2 & 0 \\ 1 & 1 & 2 \\ 1 & 1 & 3 \end{pmatrix}^8 \right)$$

Each equation in Exercises 1-4 illustrates a property of determinants. State the property.

1.	4	$-3 \\ -1$	8	=	- 0	-1	-2 8	
2.	0	2 3 7	-4	=	0	3	-4	
	3	7	4		0	1	-2	

5 -2 | 1 -3 6 |

3.
$$\begin{vmatrix} 3 & -6 & 9 \\ 3 & 5 & -5 \\ 1 & 3 & 3 \end{vmatrix} = 3 \begin{vmatrix} 1 & -2 & 3 \\ 3 & 5 & -5 \\ 1 & 3 & 3 \end{vmatrix}$$

echelon form.

5.
$$\begin{vmatrix} 1 & 5 & -4 \\ -1 & -4 & 5 \\ -2 & -8 & 7 \end{vmatrix}$$
6. $\begin{vmatrix} 3 & 3 & -3 \\ 3 & 4 & -4 \\ 2 & -3 & -5 \end{vmatrix}$
7. $\begin{vmatrix} 1 & 3 & 0 & 2 \\ -2 & -5 & 7 & 4 \\ 3 & 5 & 2 & 1 \\ 1 & -1 & 2 & -3 \end{vmatrix}$
8. $\begin{vmatrix} 1 & 3 & 2 & -4 \\ 0 & 1 & 2 & -5 \\ 2 & 7 & 6 & -3 \\ -3 & -10 & -7 & 2 \end{vmatrix}$
9. $\begin{vmatrix} 1 & -1 & -3 & 0 \\ 0 & 1 & 5 & 4 \\ -1 & 0 & 5 & 3 \\ 3 & -3 & -2 & 3 \end{vmatrix}$
 $\begin{vmatrix} 1 & 3 & -1 & 0 & -2 \\ 0 & 2 & -4 & -2 & -6 \\ 0 & 2 & -6 & 2 & 3 & 10 \end{vmatrix}$

Combine the methods of row reduction and cofactor expansion to compute the determinants in Exercises
$$11-14$$
.

12. 3 4 3 11 4 6

 $\begin{array}{cccc} 0 & 1 & -3 \\ 0 & -4 & 3 \end{array}$

38.
$$A = \begin{bmatrix} 3 & 6 \\ -1 & -2 \end{bmatrix}, B = \begin{bmatrix} 4 & 3 \\ -1 & -3 \end{bmatrix}$$

13.
$$\begin{vmatrix} 2 & 5 & 4 & 1 \\ 4 & 7 & 6 & 2 \\ 6 & -2 & -4 & 0 \end{vmatrix}$$
 14. $\begin{vmatrix} 1 & 5 & 4 & 1 \\ 0 & -2 & -4 & 0 \\ 3 & 5 & 4 & 1 \end{vmatrix}$

Find the determinants in Exercises 15-20, where

$$\begin{vmatrix} d & e & f \\ g & h & i \end{vmatrix} = 7.$$

$$\begin{vmatrix} c \\ f \\ 3i \end{vmatrix}$$

$$\mathbf{16.} \begin{vmatrix} a & b & c \\ 5d & 5e & 5f \\ g & h & i \end{vmatrix}$$

17.
$$\begin{bmatrix} a & b & c & c + f \\ d & e & f \\ g & h & i \end{bmatrix}$$
18.
$$\begin{bmatrix} a & b & c \\ g & h & i \end{bmatrix}$$
19.
$$\begin{bmatrix} a & b & c \\ c & c \end{bmatrix}$$

19.
$$\begin{vmatrix} 2d + a & 2e + b & 2f + c \\ g & h & i \end{vmatrix}$$

20. $\begin{vmatrix} a & b & c \\ d + 3g & e + 3h & f + 3i \\ h & i & i \end{vmatrix}$

23.
$$\begin{bmatrix} 2 & 0 & 0 & 6 \\ 1 & -7 & -5 & 0 \\ 3 & 8 & 6 & 0 \\ 0 & 7 & 5 & 4 \end{bmatrix}$$
In Exercises 24–26 use determinants to decide if the set of vectors in linearly independent.

In Exercises 24–26, use determinants to is linearly independent.
$$\begin{bmatrix}
4 & 7 & -7 & -3 \\
7 & 7 & 7
\end{bmatrix}$$

$$\begin{bmatrix}
2 \\
 \end{bmatrix}, \begin{bmatrix}
7 \\
 -4 \\
 -6
\end{bmatrix}, \begin{bmatrix}
-8 \\
5 \\
7
\end{bmatrix}, \begin{bmatrix}
7 \\
0 \\
 -5
\end{bmatrix}$$

6.
$$\begin{bmatrix} 3 \\ 5 \\ -6 \\ 4 \end{bmatrix}$$
, $\begin{bmatrix} 2 \\ -6 \\ 0 \\ 7 \end{bmatrix}$, $\begin{bmatrix} -2 \\ -1 \\ 3 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 0 \\ -2 \end{bmatrix}$

In Exercises 27 and 28, A and B are $n \times n$ matrices. Mark each statement True or False. Justify each answer. 27. a. A row replacement operation does not affect the determi-

b. The determinant of A is the product of the pivots in any echelon form U of A, multiplied by $(-1)^r$, where r is the number of row interchanges made during row reduction

from A to U. c. If the columns of A are linearly dependent, then $\det A = 0$.

d. det(A + B) = det A + det B.

28. a. If three row interchanges are made in succession, then the new determinant equals the old determinant. b. The determinant of A is the product of the diagonal entries

c. If det A is zero, then two rows or two columns are the same, or a row or a column is zero.

d. $\det A^{-1} = (-1) \det A$. **29.** Compute det B^4 , where B =

30. Use Theorem 3 (but not Theorem 4) to show that if two rows of a square matrix A are equal, then $\det A = 0$. The same is true for two columns. Why?

In Exercises 31-36, mention an appropriate theorem in your explanation.

31. Show that if A is invertible, then $\det A^{-1} = \frac{1}{\det A}$ 32. Suppose that A is a square matrix such that $\det A^3 = 0$.

Explain why A cannot be invertible. 33. Let A and B be square matrices. Show that even though AB and BA may not be equal, it is always true that

 $\det AB = \det BA$. 34. Let A and P be square matrices, with P invertible. Show that $\det(PAP^{-1}) = \det A.$

35. Let U be a square matrix such that $U^TU = I$. Show that $\det U = \pm 1$.

36. Find a formula for det(rA) when A is an $n \times n$ matrix.

Verify that $\det AB = (\det A)(\det B)$ for the matrices in Exercises 37 and 38. (Do not use Theorem 6.)

37 and 38. (Do not use Theorem 6.)

37.
$$A = \begin{bmatrix} 3 & 0 \\ 6 & 1 \end{bmatrix}, B = \begin{bmatrix} 2 & 0 \\ 5 & 4 \end{bmatrix}$$

6

40. Let
$$A$$
 and B be 4×4 matrices, with det $A = -3$ and det $B = -1$. Compute:

a. det AB

b. det B^5

c. det $2A$

d.
$$\det A^T B A$$
 e. $\det B^{-1} A B$
41. Verify that $\det A = \det B + \det C$, where

41. Verify that
$$\det A = \det B + \det C$$
, where

$$A = \begin{bmatrix} a+e & b+f \\ c & d \end{bmatrix}, B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, C = \begin{bmatrix} e & f \\ c & d \end{bmatrix}$$

42. Let
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Show that $\det(A + B) = \det A + \det B$ if and only if $a + d = 0$.

Section 3.3: Volume, Linear Transformations

Chapter 3: Determinants

Math 1554 Linear Algebra

NOTE: Cramers rule and Adjoint of a matrix are NOT covered in Math 1554

Topics and Objectives

Topics

We will cover these topics in this section.

 Relationships between area, volume, determinants, and linear transformations.

Objectives

For the topics covered in this section, students are expected to be able to do the following.

 Use determinants to compute the area of a parallelogram, or the volume of a parallelepiped, possibly under a given linear transformation.

Students are not expected to be familiar with Cramer's rule.

Section 3.3 Slide 192

	Topics and Objectives
ations	Topics We will cover these topics i 1. Relationships between transformations.
	Objectives For the topics covered in the following.
	Use determinants to constitute of a possible of a pos

Section 3.3: Volume, Linear Transforma

Chapter 3 : Determinants

Math 1554 Linear Algebra

Topics We will cover these topics in this section.	
 Relationships between area, volume, determinants, and linear transformations. 	

6	9/25 - 9/29				
7	10/2 - 10/6				

9/18 - 9/22

10/9 - 10/13

2.3,2.4	WS2.2,2.3
2.9	WS2829

WS3.3.4.9

3.1.3.2

5.1.5.2

WS2425

WS3.1.3.2

WS5.1.5.2

Exam 2, Review Cancelled

ts are not expected to be familiar with Cramer's rul

Supplementary FREE textbook

https://textbooks.math.gatech.edu/ila/

NOTE: Cramers rule and Adjoint of a matrix are NOT covered in Math 1554

Interactive Linear Algebra Dan Margalit, Joseph Rabinoff **≡** Index ✓ Prev ∧ Up Next > 4.3 Determinants and Volumes **Objectives** 1. Understand the relationship between the determinant of a matrix and the volume of a parallelepiped. 2. Learn to use determinants to compute volumes of parallelograms and triangles. 3. Learn to use determinants to compute the volume of some curvy shapes like ellipses. 4. Pictures: parallelepiped, the image of a curvy shape under a linear transformation. 5. Theorem: determinants and volumes. 6. Vocabulary word: parallelepiped. In this section we give a geometric interpretation of determinants, in terms of volumes. This will shed light on the reason behind three of the four defining properties of the determinant. It is also a crucial ingredient in the change-ofvariables formula in multivariable calculus.

Parallelograms and Paralellepipeds

The determinant computes the volume of the following kind of geometric object.

Definition. The *paralellepiped* determined by *n* vectors v_1, v_2, \dots, v_n in \mathbb{R}^n is the subset

$$P = \{a_1x_1 + a_2x_2 + \dots + a_nx_n \mid 0 \le a_1, a_2, \dots, a_n \le 1\}.$$

In other words, a parallelepiped is the set of all linear combinations of n vectors with coefficients in [0,1]. We can draw parallelepipeds using the parallelogram law for

Example (The unit cube). The parallelepiped determined by the standard coordinate vectors e_1, e_2, \dots, e_n is the unit n-dimensional cube.

Topics and Objectives

Topics

vill cover these topics in this section

Relationships between area, volume, determinants, and linear transformations.

Objectives

For the topics covered in this section, students are expected to be able to do the following.

 Use determinants to compute the area of a parallelogram, or the volume of a parallelepiped, possibly under a given linear transformation

Students are not expected to be familiar with Cramer's rule.

Determinants, Area and Volume

In \mathbb{R}^2 , determinants give us the area of a parallelogram.

dex (A) = ad-bc

FIGURE 3 Volume = |abc|.

a-bic= val

When does a parallelepiped have zero volume? This can happen only if the parallelepiped is flat, i.e., it is squashed into a lower dimension.

This means exactly that $\{\nu_1, \nu_2, \dots, \nu_n\}$ is linearly dependent, which by this corollary in Section 4.1 means that the matrix with rows $\nu_1, \nu_2, \dots, \nu_n$ has determinant zero. To summarize:

Key Observation. The parallelepiped defined by v_1, v_2, \dots, v_n has zero volume if and only if the matrix with rows v_1, v_2, \dots, v_n has zero determinant.

Example. When n = 3, a parallelepiped is a kind of a skewed cube. Note that the faces come in parallel pairs.

Example (Parallelograms). When n=2, a paralellepiped is just a paralellogram in

Example (Area of a triangle). ^

R2. Note that the edges come in parallel pairs.

Find the area of the triangle with vertices (-1, -2), (2, -1), (1, 3).

Solution

Doubling a triangle makes a paralellogram. We choose two of its sides to be the rows of a matrix.

Determinants as Area, or Volume

Theorem

The volume of the parallelpiped spanned by the columns of an $n \times n$ matrix A is $|\det A|$.

Key Geometric Fact (which works in any dimension). The area of the parallelogram spanned by two vectors \vec{a}, \vec{b} is equal to the area spanned by $\vec{a}, c\vec{a} + \vec{b}$, for any scalar c.

 $\textbf{FIGURE 2} \ \ \textbf{Two parallelograms of equal area}.$

Section 3.3 Slide 1

Any 3×3 matrix A can be transformed into a diagonal matrix using column operations that do not change $|\det(A)|$.

Example 1

Calculate the area of the parallelogram determined by the points (-2, -2), (0, 3), (4, -1), (6, 4)

area.

Section 3.3 Slide 196

Linear Transformations

 $| \overline{\text{Theorem}} |$ If $T_A: \mathbb{R}^n \mapsto \mathbb{R}^n$, and S is some parallelogram in \mathbb{R}^n , then $\text{volume} (T_A(S)) = |\text{det}(A)| \cdot \text{volume}(S)$

An example that applies this theorem is given in this week's worksheets.

Vol (7(5)) = | det (15) * Vol(5)

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation determined by a 2×2 matrix A. If S is a parallelogram in \mathbb{R}^2 , then

$$\{\text{area of } T(S)\} = |\det A| \cdot \{\text{area of } S\}$$
 (5)

If T is determined by a 3×3 matrix A, and if S is a parallelepiped in \mathbb{R}^3 , then

$$\{\text{volume of } T(S)\} = |\det A| \cdot \{\text{volume of } S\}$$

all Hoz+ Cy2 Fdy= 12

Example (Area of an ellipse). ^

Find the area of the interior E of the ellipse defined by the equation

$$\left(\frac{2x-y}{2}\right)^2 + \left(\frac{y+3x}{3}\right)^2 = 1.$$

then $(2x-y)^2 + (\frac{4.13x}{3})^2 = 1$

T ("circle") =

T(x)=A+x

https://www.geogebra.org/calculator/mkxeqfjy

Find the area of the interior E of the ellipse defined by the equation

$$\left(\frac{2x-y}{2}\right)^2 + \left(\frac{y+3x}{3}\right)^2 = 1.$$

ARKON CT

Example 1

- ullet A small town has two libraries, A and B. . After 1 month, among the books checked out of A,
- \blacktriangleright 80% returned to A
- ▶ 20% returned to B
- After 1 month, among the books checked out of B,
 - ► 30% returned to A
- ▶ 70% returned to B

If both libraries have 1000 books today, how many books does each library have after 1 month? After one year? After n months? A place to simulate this is http://setosa.io/markov/index.html

Example 1 Continued

The books are equally divided by between the two branches, denoted by . What is the distribution after 1 month, call it \vec{x}_1 ? After two months?

After k months, the distribution is \vec{x}_k , which is what in terms of \vec{x}_0 ?

$$|\infty|$$
 $\frac{180}{20}$ $+ |\infty|$ $\frac{180}{20}$ $= |000|$

$$(.80) 1100 + (.30) 900 = 1150$$

 $(.20) 1100 + (.60) 900 = 860$

$$|(00)^{1/2}_{1/2}| + |(00)^{1/2}_{1/2}| = |(1/20)^{1/2}_{1/2}|$$

$$\int_{\tilde{x}_2} \int_{\tilde{x}_2} \int_{\tilde{x}_2$$

In Exercises 19-22, find the area of the parallelogram whose vertices are listed.

23. Find the volume of the parallelepiped with one vertex at the origin and adjacent vertices at
$$(1,0,-3)$$
, $(1,2,4)$, and

$$\mathbf{b}_1 = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$
 and $\mathbf{b}_2 = \begin{bmatrix} -2 \\ 5 \end{bmatrix}$, and let $A = \begin{bmatrix} 6 & -3 \\ -3 & 2 \end{bmatrix}$. Compute the area of the image of S under the mapping $\mathbf{x} \mapsto A\mathbf{x}$.

28. Repeat Exercise 27 with
$$\mathbf{b}_1 = \begin{bmatrix} 4 \\ -7 \end{bmatrix}$$
, $\mathbf{b}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, and $A = \begin{bmatrix} 5 & 2 \\ 1 & 1 \end{bmatrix}$.

29. Find a formula for the area of the triangle whose vertices are

$$(x_3, y_3)$$
. Show that $\{\text{area of triangle}\} = \frac{1}{2} \det \begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix}$

31. Let
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 be the linear transformation determined by the matrix $A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$, where a, b , and c are