1. There are 134 students in our finite math class. Consider the following subsets of students:

 $A = \{\text{students who like apricots}\}\$

 $B = \{\text{students who like bagels}\}\$

 $C = \{\text{students who like candy}\}.$

(A) Given that

$$n(U) = 134$$

$$n(A) = 91$$

$$n(B) = 71$$

$$n(C) = 113$$

$$n(A' \cap B' \cap C') = 2$$
 $n(A \cap B \cap C) = 42$

$$n(A \cap B \cap C') = 8$$
 $n(A' \cap B \cap C') = 5$ $n(A' \cap B' \cap C) = 20$,

(B) Given that

$$n(U) = 134$$

$$n(A) = 72$$

$$n(A) = 72 \qquad \qquad n(B) = 76$$

$$n(C) = 98$$

$$n(A' \cap B' \cap C') = 9 \quad n(A \cap B \cap C) = 32$$

$$n(A \cap B \cap C) = 3$$

- $n(A \cap B \cap C') = 6 \quad n(A' \cap B \cap C') = 5 \quad n(A' \cap B' \cap C) = 15,$
- (a) draw a Venn diagram which portrays the situation and use it to answer the questions. (5 pts.)

- (b) How many basic regions are there in the Venn diagram?
- (5 pts.)

(A) & (B)

(c) How many students like bagels or candy?

(8 pts.)

(8 pts.)

(A) 126

(d) How many students like apricots or candy, but not bagels?

6

2. While on break you took 9 pictures of your vacation.

(8 pts. each)

- (a) (A) How many ways can you pick 4 pictures and arrange them in a line on the wall?
- (a) (B) How many ways can you pick 5 pictures to give to your Mom?

- (b) (A) How many ways can you pick 5 pictures to give to your Mom?
- (c) (B) How many ways can you pick 4 pictures and arrange them in a line on the wall?

3. You toss a coin 6 times and record the number of heads and tails. How many possible outcomes contain two or more heads? (10 pts.)

(A) & (B) 57

4. Short answer section.

(3 pts. each)

- (i) (A) C(5,1) = 5
- (i) (B) C(10, 2) = 45
- (ii) (A) P(10, 10) = 3628800
- (ii) (B) The number of subsets of $\{a, b, c\}$ is
- (iii) (A) The number of subsets of $\{a, b, c\}$ is
- (iii) (B) $U \cap \emptyset = \phi$
- (iv) (A)(B) If $A = \{a, b, c, e\}$ and $B = \{a, d, e, f\}$, then $A \cap B$ is $\{a, e, f\}$
- (v) (A) $U \cap \emptyset = \not p$
- (v) (B) P(8,3) = 336
- (vi) (A) The coefficient of x^3y^2 in the binomial expansion of $(x+y)^5$ is $\ensuremath{\mathbf{10}}$
- (vi) (B) P(10,10) = 362800
- (vii) (A) C(10, 2) = 45
- (vii) (B) The coefficient of x^3y^2 in the binomial expansion of $(x+y)^5$ is \bigcup
- (viii) (A) P(8,3) = 336
- (viii) (B) C(5,1) = 5

5. True and false questions.

(4 pts. each)

(i) There are exactly 16 subsets of $\{a, b, c, d, e, f\}$ that contain $\{a, b\}$ as a subset.

TRUE FALSE

(ii) There are 1260 9-digit numbers that contain 4 zeros, 3 ones, and 2 twos.

TRUE | FALSE

(iii) $\binom{16}{4} = \binom{16}{12}$

TRUE | FALSE

(iv) If $A \subseteq B$, then $n(A \cup B)$ equals n(A) + n(B).

TRUE FALSE

(v) The number of terms in the binomial expansion of $(x-y)^{18}$ is 19.

TRUE FALSE

(vi) The number of poker hands that contain four of a kind is $C(13,1) \cdot C(4,1) \cdot C(12,1)$.

TRUE | FALSE