Quiz 4 (11 am)

1. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation which associates to each $\mathrm{x} \in \mathbb{R}^{2}$ the vector obtained from \mathbf{x} by first rotating \mathbf{x} by 90° counter-clockwise and then reflecting the result about the horizontal x-axis. Find the standard matrix A of T as well as the image $T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$. Hint: the first column of A is $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)$ and the second column of A is $T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)$. (4 pts. ea.)
 1 Ans.

$$
A=\left[\begin{array}{cc}
0-1 \\
-1 & 0
\end{array}\right] \text { and } A\left(\left[\begin{array}{r}
1 \\
1
\end{array}\right)=\left[\begin{array}{l}
0-1 \\
-1
\end{array} \left\lvert\,\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
-1 \\
-1
\end{array}\right]\right.\right.\right.
$$

MK

$$
e_{1}=\{\begin{array}{l}
1 \\
0
\end{array} \left\lvert\, \quad \overbrace{\left\lvert\,\left[\begin{array}{l}
0 \\
-1
\end{array}\right]\right.}^{\substack{e_{1}}} \rightarrow x\right.
$$

$$
T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right)=\left[\begin{array}{c}
0 \\
-1
\end{array}\right]\right.
$$

2. Determine whether the given vectors are linearly independent or linearly dependent. If the vectors are linearly dependent find a non-trivial linear combination of the vectors which give the zero vector.

Solve $A x=0$
if unique sold $x=0$
Then lis indeyadent.

TF If A is a 4×3 matrix with 3 pivots, then the columns of A are linearly independent. TAIf $A x=0$ has the trivial solution, then the columns of A are linearly independent. Fiber the columns of A are linearly independent, then $A x=b$ has a unique collation inconsistent T F The linear transformation with standard matrix $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ rotates vectors in \mathbb{R}^{2} by 90°

$$
\text { Clockivise }\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{r}
0 \\
-1
\end{array}\right)
$$

