Quiz 4 (11 am)

1. Let $T:\mathbb{R}^2\to\mathbb{R}^2$ be the linear transformation which associates to each $\mathbf{x}\in\mathbb{R}^2$ the vector obtained from x by first rotating x by 90° counter-clockwise and then reflecting the result about the horizontal x-axis. Find the standard matrix A of T as well as the image $T(\begin{bmatrix} 1 \\ 1 \end{bmatrix})$.

Hint: the first column of A is $T \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and the second column of A is $T \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. (4 pts. ea.)

2. Determine whether the given vectors are linearly independent or linearly dependent. If the vectors are linearly dependent find a non-trivial linear combination of the vectors which give the zero vector.

$$\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 6 \\ 2 \\ 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 6 \\ -1 & 2 & 2 \\ 0 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 6 \\ 0 & 4 & 8 \\ 0 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 6 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

2 pivots) free voltable and 3 cols.) Not 1.4 ind (1 pt. each)

3. True or False section.

A = [: : :]

F If A is a 4×3 matrix with 3 pivots, then the columns of A are linearly independent. TFIf Ax = 0 has the trivial solution, then the columns of A are linearly independent.

fight the columns of A are linearly independent, then Ax = b has a unique solution could be inconsistent

The linear transformation with standard matrix $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ rotates vectors in \mathbb{R}^2 by 90°

Clockinise

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

