Quiz 4 (12 pm)

1. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation which associates to each $\mathrm{x} \in \mathbb{R}^{2}$ the vector obtained from \mathbf{x} by first reflecting \mathbf{x} about the horizontal x-axis and then rotating \mathbf{x} by 90° clockwise. Find the standard matrix A of T as well as the image $T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$. Hint: the first
Lea: column of A is $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)$ and the second column of A is $T\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)$.
(4 pts. ea.)

$$
A=\left[\begin{array}{ll}
T\left(e_{1}\right) & T\left(e_{2}\right)
\end{array}\right]
$$

Sorn
2. Determine whether the given vectors are linearly independent or linearly dependent. If the vectors are linearly dependent find a non-trivial linear combination of the vectors which give the zero vector.

Solve $A_{x}=0$?

$$
\left.\begin{array}{ccc}
u_{1} & u_{2} & v_{3} \\
{\left[\begin{array}{c}
3 \\
-1 \\
0
\end{array}\right],}
\end{array} \begin{array}{c}
{\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right],}
\end{array} \begin{array}{c}
7 \\
-1 \\
2
\end{array}\right], ~ \$
$$

(8 pts.)

$$
\left[\begin{array}{ccc}
3 & 1 & 7 \\
-1 & 1 & -1 \\
0 & 2 & 2
\end{array}\right] \sim\left[\begin{array}{ccc}
3 A_{2}+1\left[_{1}\right. & 4 & 4 \\
-1 & 1 & -1 \\
0 & 2 & 2
\end{array}\right]
$$

$$
\sim\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{lll}
x & y & z=r \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array} \left\lvert\, \begin{array}{ll}
x & x=-2 r \\
y=-r & r=-1 \\
z=r \text { \&r ce }
\end{array}\right.\right.
$$

3. True or False section.
(1 pt. each)
TF If A is a 4×3 matrix with 3 pivots, then the columns of A are linearly independent. T/F If $A x=0$ has the trivial solution, then the columns of A are linearly independent. (a)/Self the columns of A are linearly independent, then $A x=b$ has a unique solution. $\left[\begin{array}{ll}0 & 1\end{array}\right]$ could be inconsistent T/F) The linear transformation with standard matrix $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ rotates vectors in \mathbb{R}^{2} by 90° counter-ctockwise.

Clocleurise

