Math 1552, Integral Calculus

Section 5.6: Area Between Curves

1. Suppose that $y=f(x)$ and $y=g(x)$ are both continuous functions on the interval $[a, b]$.

Determine if each statement below is always true or sometimes false.
(a) Suppose that $f(c)>g(c)$ for some number $c \in(a, b)$. Then the area bounded by f, g, $x=a$, and $x=b$ can be found by evaluating the integral $\int_{a}^{b}(f(x)-g(x)) d x$. [FALSE; THERE MAY BE A POINT WHERE THE FUNCTIONS SWAP FROM "TOP" TO "BOTTOM"]
(b) If $\int_{a}^{b}(f(x)-g(x)) d x$ evaluates to -5 , then the area bounded by $f, g, x=a$, and $x=b$ is 5. [FALSE; THE AREA MAY BE NEGATIVE ON ONE PIECE AND POSITIVE ON ANOTHER-THIS IS ABSOLUTE NET AREA, NOT TOTAL AREA]
(c) If $f(x)>g(x)$ for every $x \in[a, b]$, then $\int_{a}^{b}|f(x)-g(x)| d x=\int_{a}^{b}(f(x)-g(x)) d x$. [TRUE]
2. Find the area bounded by the region between the curves $f(x)=x^{3}+2 x^{2}$ and $g(x)=$ $x^{2}+2 x$.

Solution: The curves intersect when $x=0,1,-2$. Breaking the interval into pieces, we see that f is larger on $[-2,0]$ and g is larger on $[0,1]$, so:

$$
A=\int_{-2}^{0}[f(x)-g(x)] d x+\int_{0}^{1}[g(x)-f(x)] d x .
$$

Plugging in the functions and evaluating the integral yields a total area of $\frac{37}{12}$ square units.
3. Find the area bounded by the region enclosed by the three curves $y=x^{3}, y=-x$, and $y=-1$.
Solution: DRAW A PICTURE. Points of intersection are $(0,0)\left(\right.$ when $\left.x^{3}=-x\right),(-1,-1)$ (when $x^{3}=-1$), and ($1,-1$) (when $-x=-1$).

$$
A=\int_{-1}^{0}\left(x^{3}-(-1)\right) d x+\int_{0}^{1}(-x-(-1)) d x .
$$

Evaluating gives an answer of $\frac{5}{4}$ square units.
4. Find the area bounded by the curves $y=\cos x$ and $y=\sin (2 x)$ on the interval $\left[0, \frac{\pi}{2}\right]$.

Solution: Setting the curves equal, and using the trig identity $\sin (2 x)=2 \sin x \cos x$, we see they intersect at $x=\frac{\pi}{2} x=\frac{\pi}{6}$. On the interval $\left[0, \frac{\pi}{2}\right]$, the $\cos x$ is greater on $\left[0, \frac{\pi}{6}\right]$ and $\sin (2 x)$ is greater on $\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$, so:

$$
A=\int_{0}^{\pi / 6}(\cos x-\sin (2 x)) d x+\int_{\pi / 6}^{\pi / 2}(\sin (2 x)-\cos x) d x
$$

Evaluating the integral gives an answer of $\frac{1}{2}$ square unit.
5. Find the area of the triangle with vertices at the points $(0,1),(3,4)$, and $(4,2)$. USE

CALCULUS.

Solution: DRAW A PICTURE. Let L_{1} be the line between $(0,1)$ and $(3,4), L_{2}$ the line between $(3,4)$ ad $(4,2)$, and L_{3} the line between $(0,1)$ and $(4,2)$. Using the point-slope form of a line, we see that:

$$
L_{1}: y=x+1, \quad L_{2}: y=-2 x+10, \quad L_{3}: y=\frac{1}{4} x+1
$$

L_{3} is always the "bottom" function; the top function changes from L_{1} to L_{2} at the point $(3,4)$. Thus:

$$
A=\int_{0}^{3}\left[(x+1)-\left(\frac{1}{4} x+1\right)\right] d x+\int_{3}^{4}\left[(-2 x+10)-\left(\frac{1}{4} x+1\right)\right] d x
$$

Evaluating this integral yields an area of 4.5 square units.

