Errata

This document contains the list of errors (with appropriate corrections) that we found after the publication of our book:

List of errors

PREFACE

1. Page xii, end of the formula in line 3 from the top.
 REPLACE
 ...(x) s,
 BY
 ...(x)ds,

CHAPTER 1

1. Page 8, formula (1.2).
 REPLACE
 \[\|f(t, \cdot)\| \]
 BY
 \[\|\rho(t, \cdot)\| \]

2. Page 102, Remark 2.15, second line of (A4).
 REPLACE
 ...and \[a_{\left[\eta,\tau_{T}\right]}(\cdot) \]
 BY
 ...and, for every \(\eta \in [t, T] \), \[a_{1_{\left[\eta,\tau_{T}\right]}(\cdot)} \]
1. Page 121, Hypothesis 2.33 (i), first line.

REPLACE

“... and \(l(t,x,a) \) are uniformly continuous in \(t \) on \([0,T]\), uniformly for \((x,a) \in B(0,R) \times \Lambda \) for every \(R > 0 \).”

BY

“... and \(l(t,x,a) \) are continuous and uniformly continuous in \((t,x)\) on \([0,T] \times B(0,R)\), uniformly for \(a \in \Lambda \) for every \(R > 0 \).”

2. Page 124, Theorem 2.36, third line.

REPLACE

“Let Hypotheses 1.125, 2.1 and 2.33-(ii)(iii) be satisfied”,

BY

“Let Hypotheses 1.125, 2.1 and 2.33 be satisfied”,

i.e. “-(ii)(iii)” should be deleted.

3. Page 128, Hypothesis 2.40 (i), first line.

REPLACE

“There exist \(C,N > 0 \) such that ...”

BY

“The functions \(b,\sigma \) and \(l \) are continuous, \(l(x,a) \) is uniformly continuous in \(x \) on \(B(0,R) \), uniformly for \(a \in \Lambda \) for every \(R > 0 \). Moreover, there exist \(C,N > 0 \) such that ...”.

4. Page 129, formula (2.69)

REPLACE

\(l(s,X(s),a(s)) \)

BY

\(l(X(s),a(s)) \)

5. Page 144, the formula in line 3 from the bottom.

REPLACE

\(\langle Ax,Dv \rangle + F(Dv) + l_2(x) ... \)

BY

\(\langle Ax + b(x),Dv \rangle + F(Dv) + l_1(x) ... \)

CHAPTER 3
1. Page 195, line 15 from the bottom.
REPLACE
\[\tilde{v}(s, y) = u(\ldots) \]
BY
\[\tilde{v}(s, y) = v(\ldots) \]

2. Page 197, Definition 3.34, line 4 from the bottom.
REPLACE
"A locally bounded \(B \)-upper semicontinuous function \(u \) on \([0, T) \times \overline{U} \ldots""
BY
"A locally bounded and continuous function \(u \) on \([0, T) \times \overline{U} \) which is \(B \)-upper semicontinuous on \((0, T) \times \overline{U} \ldots""

3. Page 198, Definition 3.34, line 2 from the top.
REPLACE
"A locally bounded \(B \)-lower semicontinuous function \(u \) on \([0, T) \times \overline{U} \ldots""
BY
"A locally bounded and continuous function \(u \) on \([0, T) \times \overline{U} \) which is \(B \)-lower semicontinuous on \((0, T) \times \overline{U} \ldots""

4. Page 198, Definition 3.35, line 4 from the bottom.
REPLACE
"A locally bounded \(B \)-upper semicontinuous function \(u \) on \((0, T] \times \overline{U} \ldots""
BY
"A locally bounded and continuous function \(u \) on \((0, T] \times \overline{U} \) which is \(B \)-upper semicontinuous on \((0, T) \times \overline{U} \ldots""

5. Page 199, Definition 3.35, line 2 from the top.
REPLACE
"A locally bounded \(B \)-lower semicontinuous function \(u \) on \((0, T] \times \overline{U} \ldots""
BY
"A locally bounded and continuous function \(u \) on \((0, T] \times \overline{U} \) which is \(B \)-lower semicontinuous on \((0, T) \times \overline{U} \ldots""

6. Page 252, line 2 from the top.
REPLACE
\[\kappa_\omega(r) \]
BY
\[\kappa_{\omega_1}(r) \]
7. Page 252, line 11 from the top.

REPLACE
\(\varphi(t, x, y) = \varphi_\delta(|x - y|^2 + \gamma)^{\frac{1}{2}} (1 + t) \)

BY
\(\varphi(t, x, y) = \varphi_\delta \left((|x - y|^2 + \gamma)^{\frac{1}{2}} \right) (1 + t) \)

REPLACE
\(m_\tau(|x - y|) \)

BY
\(m_\tau(|x - y|_{-1}) \)

REPLACE
\(X(t) = x \)

BY
\(X_n(t) = x \)

10. Page 327, line 5 from the bottom.

REPLACE
\(Q_N(-A)^{-\frac{\alpha}{2}} \int_0^t (-A)^{\frac{\alpha + \gamma}{2}} e^{(t-s)A} (-A)^{\frac{\alpha}{2}} \sigma((-A)^{\frac{\alpha}{2}} Y(s), a_1(s))dW(s) \)

BY
\(Q_N(-A)^{-\frac{\alpha}{2}} \int_0^t (-A)^{\frac{\alpha + \gamma}{2}} e^{(t-s)A} (-A)^{-\frac{\alpha}{2}} \sigma((-A)^{\frac{\alpha}{2}} Y(s), a_1(s))dW(s) \)

11. Page 327, line 3 from the bottom.

REPLACE
\(\int_0^t (-A)^{\frac{\alpha}{2}} e^{(t-s)A} (-A)^{\frac{\alpha}{2}} P_N[\sigma((-A)^{\frac{\alpha}{2}} Y_N(s), a_1(s)) - \sigma((-A)^{\frac{\alpha}{2}} Y(s), \alpha_1(s))]dW_Q(s) \)

BY
\(\int_0^t (-A)^{\frac{\alpha}{2}} e^{(t-s)A} (-A)^{-\frac{\alpha}{2}} P_N[\sigma((-A)^{\frac{\alpha}{2}} Y_N(s), a_1(s)) - \sigma((-A)^{\frac{\alpha}{2}} Y(s), \alpha_1(s))]dW_Q(s) \)

CHAPTER 4

1. Page 382, line 1 from the bottom.

REPLACE
\(|G(y(r))^{-1}G(x)h|_Y \)

BY
\(|G(y(r))^{-1}G(x)h|_Z \)
2. Page 383, line 7 from the top.

REPLACE
\[s^{-1}[\varphi(t, s) - \varphi(t, 0)] \]
BY
\[s^{-1}|\varphi(t, s) - \varphi(t, 0)|_Y \]

3. Page 521, line 2 from the top, formula (4.254).

REPLACE
\[UC_b(X, \mathcal{L}_1(H)) \]
BY
\[UC_b(H, \mathcal{L}_1(H)) \]

4. Page 541, line 16 from the top.

DELETE
pr2:exmildOUF0spsapp
There should be “Proposition 1.147” there.

CHAPTER 5

1. Page 649, Lemma 5.46, line 6 from the bottom (the first line of the formula defining \(\rho_a(\cdot) \)).

REPLACE
... \(dW_Q(r) \)
BY
... \(Q^{-1/2}dW_Q(r) \)

2. Page 650, line 3 from the bottom.

REPLACE
... \(dW_Q(r) \)
BY
... \(Q^{-1/2}dW_Q(r) \)

3. Page 650, line 1 from the bottom.

REPLACE
... \(dW_Q(r) \)
BY
... \(Q^{-1/2}dW_Q(r) \)
APPENDIX B

 REPLACE
 \[(\lambda I - A^m)(D(A_0))\]...
 BY
 \[(\lambda I - A^m)^{-1}(D(A_0))\]...

APPENDIX C

1. Page 851.
 REPLACE THE FIRST TWO LINES OF SECTION C.4 BY THE FOLLOWING:
 Let, as in Section C.2, \(H = L^2(\mathcal{O})\) and \(\Lambda = L^2(\partial\mathcal{O})\). Let \(\Xi = \Lambda, Q \in \mathcal{L}_+(\Xi)\), and let \((\mathcal{O}, \mathcal{F}, \{\mathcal{F}_s\}_{s \in [t,T]}, \mathbb{P}, W_Q)\) be a generalized reference probability space. We consider the following problem:

2. Second line of formula (C.34).
 REPLACE
 \[= h(s, y(s, \xi))\]...
 BY
 \[= h(s, \xi)\]...

3. Page 851, first line after formula (C.34).
 REPLACE
 \[\text{where } f, h : [t, T] \times \mathbb{R} \times \Omega \to \mathbb{R} \text{ and } g : [t, T] \times \partial\mathcal{O} \times \Omega \to \mathbb{R} \text{ are...}\]
 BY
 \[\text{where } f : [t, T] \times \mathbb{R} \times \Omega \to \mathbb{R} \text{ and } h, g : [t, T] \times \partial\mathcal{O} \times \Omega \to \mathbb{R} \text{ are...}\]
4. Page 851, last two lines before formula (C.35).

REPLACE

So, defining as before \(b(s, y)(\cdot) := f(s, y(\cdot)) \) and \([\sigma(s, y)z](\cdot) := h(s, y(\cdot))z(\cdot) \), we define the mild form of (C.34), for \(s \in [t, T] \), as

BY

We now define, as in Sections C.2 and C.3, \(b(s, y)(\cdot) := f(s, y(\cdot)) \) for \(s \in [t, T] \) and \(y \in H \). Moreover we define \(\sigma : [t, T] \to \mathcal{L}(\Lambda) \) as follows: for \(s \in [t, T] \) and \(z \in \Lambda \), \([\sigma(s)z](\cdot) := h(s, \cdot)z(\cdot) \). We define the mild form of (C.34), for \(s \in [t, T] \), as

5. Last line of formula (C.35).

REPLACE

\[...G_N(\sigma(r, X(r))dW_Q(r)... \]

BY

\[...G_N(\sigma(r)dW_Q(r)... \]

REPLACE

\[...N_\lambda(\sigma(s, X(s))dW_Q(s)... \]

BY

\[...N_\lambda(\sigma(s)dW_Q(s)... \]

7. Page 852, the formula in the third line of Section C.5.

REPLACE

\[...G_D(\sigma(r, X(r))dW_Q(r)... \]

BY

\[...G_D(\sigma(r)dW_Q(r)... \]

REPLACE

\[...h(s, (y(t, 0))... \]

BY

\[...h(s)... \]

REPLACE

\[...G_q(\sigma(r, X(r))dW_Q(r)... \]

BY

\[...G_q(\sigma(r)dW(r)... \]
 REPLACE
 \[G_\eta \sigma (r, X(r)) dW_Q(r) \ldots \]
 BY
 \[G_\eta \sigma (r) dW(r) \ldots \]

11. Page 853, the last line before formula (C.39) and the third line of formula (C.39).
 REPLACE
 \[L^2(t, T; \mathbb{R}) \]
 BY
 \[L^2_\eta \]

APPENDIX D

 REPLACE
 \[f(b) - f(a) \]
 BY
 \[|f(b) - f(a)|_Y \]

 REPLACE
 \[f(b) - f(a) - (b - a)f'(t_0) \]
 BY
 \[|f(b) - f(a) - (b - a)f'(t_0)|_Y \]

REFERENCES

1. Page 891, Reference 391.
 REPLACE
 Gaussian Measures in Hilbert Spaces
 BY
 Gaussian Measures in Banach Spaces