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Abstract. We construct a small time strong solution to a nonlocal Hamilton–
Jacobi equation (1.1) introduced in [48], the so-called master equation, originating
from the theory of Mean Field Games. We discover a link between metric viscosity
solutions to local Hamilton–Jacobi equations studied in [2, 19, 20] and solutions
to (1.1). As a consequence we recover the existence of solutions to the First
Order Mean Field Games equations (1.2), first proved in [48], and make a more
rigorous connection between the master equation (1.1) and the Mean Field Games
equations (1.2).
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1. Introduction.

The theory of Mean Field Games (MFG) analyzes differential games with a large
number of players, each player having a very little influence on the overall system.
This theory, which encompasses games with a continuum of players, was developed
by Lasry–Lions [44, 45, 46, 47]. Similar ideas were independently introduced at
the same time and studied in the engineering literature by Huang–Caines–Malhamé
[36, 37, 38, 40]. Games with a continuum of players or traders, first appeared in
economics, starting with the seminal work of Aumann [5]. Later a theory of non-
atomic games was presented in a book by Aumann–Shapley [6]. In this pioneering
work, Aumann–Shapley proposed a profound mathematical theory for economics,
the potential of which has not yet been fully exploited. The term “Mean Field
Games” was introduced by analogy with the mean field models in mathematical
physics where the behaviors of many identical particles are analyzed. We refer the
readers to [9, 12, 22, 29, 32] for several excellent surveys on the theory of MFG and
its extensions. In particular, the notes [12] from the lectures of P.-L. Lions [48] have
been a great contribution to the field, and have clarified the current state of the
theory of MFG. This was the starting point of our study.

The theory of MFG has attracted significant attention. In the past five years
alone, a large number of manuscripts have been devoted to it, revealing its im-
portance, impact, and possible applications (see e.g. [7, 8, 15, 23, 24, 25, 26, 27,
28, 30, 31, 33, 34, 35, 39, 41, 42, 43, 49, 50, 51, 52]). In light of the publications
[44, 45, 46, 47], we restrict our study to the simplest framework of games: those
with identical players. Our effort will be devoted mainly to the study of the master
equation of MFG (1.1); only a small part of the manuscript deals with the MFG
equations (1.2) which were studied in [46, 48, 12]. Our main result establishes the
short time existence of a regular solution to (1.1).
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Let us denote by P(Td) the set of probability measures on the d–dimensional
torus T

d, let T > 0 be a real number, and let

F, u∗ : T
d × P(Td) → R

be Lipschitz functions. The objective is to find a continuous function

u : [0, T ] × T
d × P(Td) → R

such that

(1.1)

{

∂su(s, q, µ) +
〈

∇µu(s, q, µ),∇qu(s, ·, µ)
〉

µ
+

|∇qu(s,q,µ)|2

2 + F (q, µ) = 0,

u(0, ·, ·) = u∗(·, ·)
is satisfied in some sense. Here, ∇µu stands for the Wasserstein gradient of u and
we have set

〈∇µu(s, q, µ),∇qu(s, ·, µ)〉µ =

∫

Td

∇µu(s, q, µ)(z) · ∇qu(s, z, µ)µ(dz).

We will call (1.1) the master equation of the theory of MFG.
A heuristic derivation of (1.1) as the limit of a large system of Hamilton–Jacobi

equations arising from Nash equilibria in feedback form for many players, can be
found in [48] (see also [12]). Furthermore, [48] describes the connection between
(1.1) and the first order MFG equations

(1.2)







∂tU(t, q) + |∇U(t,q)|2

2 + F (q, σt) = 0
∂tσt + ∇ · (σt∇U(t, q)) = 0 in D′

(

(0, T )) × T
d
)

U0 = u∗(q, σ0), σT = µ.

In (1.2), the first equation is supposed to be satisfied in the viscosity sense and U
represents the value function of a typical player. The second equation is supposed to
be satisfied in the distribution sense and σt, represents the probability distribution
of all the players at time t. The measures µ and σt in (1.2) are also supposed to be
absolutely continuous with respect to the Lebesgue measure for every t.

The main difficulty in dealing with (1.1) is the following. Observe that for each
(s, q, µ) fixed, the knowledge of ∂su, ∇µu and ∇qu at (s, q, µ) is not sufficient to
verify that the equation is satisfied since we need the knowledge of ∇qu(s, z, µ)

for all z ∈ T
d to fully describe (1.1). In other words, (1.1) is non–local in ∇qu.

This difficulty is coupled with the infinite dimensional character of the equation.
Interpreting in what weak sense (1.1) may be satisfied has remained a puzzle so far.
We try to unravel it by providing a possible definition in the current manuscript (see
Definition 7.3). More importantly, we prove the existence of a strong solution to
(1.1) for a short time, assuming that the data are sufficiently smooth. We hope this
work will help uncover some groundbreaking facts and improve our understanding
of the theory of MFG.
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Not to overshadow the main ideas with technical details, we have opted in this
manuscript to restrict the study of (1.1) to a particular – nevertheless important –
class of F ’s. More precisely, we choose φ ∈ C3(Td) and consider

(1.3) F (q, µ) = φ ∗ µ(q).

However we stress that the approach developed in this paper can be carried out for
a wider and quite general class of functionals.

The starting point of our work is the value function U which is the unique metric
viscosity solution, in the sense of [19] and [20] (see also [2] and [18]), to the Hamilton–
Jacobi equation

(1.4)

{

∂tU + 1
2 ||∇µU||2µ + 1

2

∫

Td φ ∗ µdµ = 0 in (0, T ) × P(Td)

U(0, ·) = U∗ on P(Td).

We draw the attention of the reader to the fact that having the coefficient 1/2 in
front of φ in (1.4) and not in (1.3) is not a typo.

According to the well-established theory of endowing the set of probability mea-
sures P(Td) with a weak Riemannian structure (see e.g. [4]), the Wasserstein gra-
dient ∇µU of U at µ ∈ P(Td) is an element of

(1.5) TµP(Td) := ∇C∞(Td)
L2(µ)

,

the tangent space to P(Td) at µ. Hence

∇µU(t, µ) : T
d → T

d

is a map which, formally at least, is the gradient of a function u(t, ·, µ) :

(1.6) ∇qu(t, q, µ) = ∇µU(t, µ)(q).

One of the tasks of the current manuscript will include finding a function u satisfying
(1.6) which will also satisfy (1.1). The identity (1.6) linking (1.1) to (1.4), appears
to be an unexpected connection between two different directions of research which,
over the past several years, have been pursued by different research groups using
different methods. Indeed, so far the study of (1.4) was primarily motivated by
aspects of fluids mechanics (see e.g. [17, 18, 19, 20]). The lectures of P.-L. Lions
[48] presented in the notes by Cardialaguet [12] seem to be the first to imply a
connection between these two directions. We stress here that the readers should not
be misled to think that they need a prior knowledge of the various viscosity solutions
concepts introduced in [2, 18, 19, 20] to grasp the content of this manuscript. We
have mentioned the works on metric viscosity solutions just to emphasize that there
is connection between (1.1) and (1.4) via the identity (1.6), which could be explored
in future studies.

The cornerstone of our work, besides establishing identity (1.6), is a good under-
standing of the regularity properties with respect to the µ variable, of the inverse
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Xt
s[µ] of the map Σt

s[µ]. The latter map is defined uniquely for small enough T and
s ∈ [0, T ] by the system of differential equations

(1.7)







∂ttΣ
t
s[µ](q) = −∇qF

(

Σt
s[µ](q),Σt

s[µ]#µ
)

, on (0, T ) × T
d

Σs
s[µ](q) = q on T

d

∂tΣ
0
s[µ](q) = ∇qu∗

(

Σ0
s[µ](q),Σ0

s[µ]#µ)
)

on T
d.

We will often write Σ(t, s, q, µ) for Σt
s[µ](q). The regularity property of Σ in

the variables (t, s, q) and the invertibility property of Σ(t, s, ·, µ) are obtained by
standard methods. However, the regularity property with respect to µ of the inverse
of Σ(t, s, ·, µ) is subtle. We overcome this obstacle by first discretizing Σt

s[µ](q) in
its µ–variable and then studying the maps

(t, q,x) ∈ (0, T ) × T
d × (Td)n → (t,Σt

s[µ
x](q),x),

where we have set

µx :=
1

n

n
∑

i=1

δxi
, x = (x1, ..., xn).

The determinant of the Jacobian of ∇t,q,xΣt
s[µ

x](q) is shown to be controlled in terms
of the finite dimensional determinant det∇qΣ

t
s[µ

x](q). This allows us to apply the
Inverse Function Theorem and then obtain bounds on partial derivatives of the
inverse of this map using the bounds on the partial derivatives of S(t, s, q,x) :=
Σt

s[µ
x](q). This task is completed in Section 8.

In Sections 5 and 6 we show that, if µ ∈ P(Td) and if s > 0 is small enough, the
infimum in the variational problem (6.2) related to the Hamilton–Jacobi equation
(1.1) is attained by a path (σ,v), where

σt = Σt
s[µ]#µ, vs = ∇µU(s, σt).

In Section 7 we construct a function u(t, q, µ) such that the pair U(t, q) = u(t, q, σt)
and σ satisfy the First Order Mean Field Games equations (1.2). We also show that
u is a solution to (1.1) in some weak sense (see Lemma 7.1 and Definition 7.3). The
statement (1.6) is one of the things we prove at this stage of the analysis. Then,
in Section 9 we prove regularity properties of the function u for small times t that
allow us to differentiate u with respect to each variable and show that u satisfies
(1.1) pointwise. We call such a function a strong solution of (1.1). Uniqueness of
strong solutions remains open. Finally, in Subsection 9.3 we make a rigorous link
between strong solutions to the master equation (1.1) and the Mean Field Games
equations (1.2) by showing in Lemma 9.9 that any strong solution u to (1.1) allows to
construct a pair (U, σ) which solves (1.2), and argue that u also allows to construct
an analogue of a Nash equilibrium for a game with a continuum of players.



6 W. GANGBO AND A. ŚWIE֒CH

After the manuscript was completed we learned about the papers [10, 13] which
deal with formal derivation of the Master Equations in both deterministic and sto-
chastic cases and their analysis. Also during the second submission of the paper a
referee pointed out preprints [11, 14] which deal with classical solutions of Master
Equations for stochastic Mean Field Games.

2. Preliminaries.

2.1. Notation and definitions. Throughout this manuscript, T
d = R

d/Zd is the
d-dimensional torus. When there is no possible confusion we identify an element
of the quotient space T

d with the unique q ∈ [0, 1)d. We denote by |q∗ − q|Td the
distance on T

d between q∗, q ∈ T
d. The Euclidean distance between q∗, q ∈ R

d is
denoted by |q∗ − q|. If ξ ∈ R

d×m we denote

|ξ|2 =

d
∑

i=1

m
∑

j=1

ξ2ij.

We denote by Id : T
d → T

d the identity map and by Id the d× d identity matrix.

Definition 2.1. Let f : R
d → R.

(i) By f : T
d → R

k we mean that f : R
d → R and if q, q∗ ∈ R

d are such that
q − q∗ ∈ Z

d, then f(q∗) = f(q).
(ii) By f : T

d → T
d we mean that if q, q∗ ∈ R

d are such that q − q∗ ∈ Z
d then

f(q∗) − f(q) ∈ Z
d.

(ii) By X ∈ C(Td; Td) we mean that X : R
d → R

d is continuous and X : T
d →

T
d.

If T > 0 and S ∈ W 2,∞
(

(0, T ) × T
d; Td

)

, unless explicitly stated otherwise,
∇tqS := ∂t∇qS, ∇qtS := ∇q∂tS, etc..., denote the distributional derivatives of S.
Since for instance, the distributional derivatives ∂t∇qS and ∇q∂tS coincide, we
denote them by ∇tqS = ∇qtS. Since the distributional derivatives coincide almost
everywhere with the pointwise derivatives, expressions such as ||∇qS||∞ will be used
to denote the essential supremum of the function |∇qS|.

Given two metric spaces S1, S2 and a map

S : [0, T ] × [0, T ] × S1 → S2

we use the notation

S(t, s, ξ) = St
s(ξ), (t, s, ξ) ∈ [0, T ] × [0, T ] × S1.

If S : [0, T ]×T
d ×P(Td) → R

d is a bounded Borel function, the smallest number A
such that

|S(t, q, µ)| ≤ A
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for almost every (t, q) ∈ [0, T ] × T
d and all µ ∈ P(Td) is denoted by ||S||∞.

We denote by P2(R
d) the set of Borel probability measures on R

d with finite
second moments. On P2(R

d) we can define a class of equivalence (cf. e.g. [21]): we
say that µ, ν ∈ P2(R

d) are equivalent if for all f ∈ C(Td) we have
∫

Rd

f(q)µ(dq) =

∫

Rd

f(q)ν(dq).

We use the notation
∫

Td

f(q)µ(dq) :=

∫

Rd

f(q)µ(dq).

The quotient of P2(R
d) by the equivalence relation is P(Td), the set of Borel proba-

bility measures on T
d. The set P(Td) has been amply studied in [21], as the quotient

space of P2(R
d), and so, we refer to that manuscript for more details. We just recall

that any measure µ ∈ P2(R
d) yields a measure µ̄ on [0, 1)d which is defined by

µ̄(B) =
∑

k∈Zd

µ(B + k)

for a Borel B ⊂ [0, 1)d.
Given µ ∈ P(Td), we denote by L2(µ) the set of Borel maps ξ : T

d → R
d which

are square integrable and we set

||ξ||2µ =

∫

Td

|ξ|2µ(dq).

Given a Borel map X : T
d → T

d and µ ∈ P(Td), we denote by X#µ the push
forward of µ by X.

Definition 2.2 (cf. [4]). Let σ ∈ AC2
(

0, T ;P(Td)
)

. We say that a Borel vector

field v : (0, T ) × T
d → R

d is a velocity for σ if t→ ||vt||σt is in L2(0, T ) and

∂tσ + ∇ · (σv) = 0

in the sense of distributions on (0, T ) × T
d. The latter statement means that for

every f ∈ C1
c

(

(0, T ) × T
d
)

∫ T

0

(
∫

Td

(

∂tf(t, q) + vt(q)∇f(t, q)
)

σt(dq)

)

dt = 0.

When x1, · · · , xn ∈ T
d we set x = (x1, · · · , xn) and

µx =
1

n

n
∑

i=1

δxi
.
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Definition 2.3. Given µ, ν ∈ P(Td), we define Γ(µ, ν) to be the set of measures
γ ∈ P(Td × T

d) which have µ as the first marginal, and ν as the second marginal.
We denote by Γ0(µ, ν) the set of γ ∈ Γ(µ, ν) such that

W 2
2 (µ, ν) := min

γ̄∈Γ(µ,ν)

∫

Td×Td

|r − q|2
Td γ̄(dq, dr) =

∫

Td×Td

|r − q|2
Tdγ(dq, dr).

Recall that P(Td) endowed with the Wasserstein distance W2 is a compact metric
space and a sequence {µk}k ⊂ P(Td) converges to µ in the Wasserstein metric if
and only if its converges narrowly.

Definition 2.4. If µ ∈ P(Td), we define TµP(Td) to be the closure in L2(µ) of the

set ∇C∞(Td) := {∇f : f ∈ C∞(Td)}.
Let F : P(Td) → R. We define the Lagrangian L and the Hamiltonian H by

(2.1) L(µ, ξ) :=
1

2
||ξ||2µ −F(µ), H(µ, ξ) :=

1

2
||ξ||2µ + F(µ)

for µ ∈ P(Td) and ξ ∈ L2(µ). The assumptions on F will be given in Subsection 2.2.
Recall that a function ψ : R

m → R is λ–convex (respectively, λ–concave) if
ψ(x)− λ/2|x|2 is convex (respectively, concave). Such functions are called semicon-
vex (respectively, semiconcave). By analogy, the concept of λ–convex functions on
P(Td) was introduced in [4]. We refer the reader to the same book for more on the
Wasserstein space, absolutely continuous curves in metric spaces, etc.

Following [18] we give a definition of the sub–differential which in general does
not coincide with that of [4] except for λ–convex functions.

Definition 2.5. Let G : P(Td) → R and let µ ∈ P(Td).

(i) We say that ξ belongs to the subdifferential of G at µ and we write ξ ∈ ∂·G(µ)
if ξ ∈ L2(µ) and

(2.2)

G(ν) − G(µ) ≥ sup
γ∈Γo(µ,ν)

∫

Td×Td

ξ(q) · (r − q)γ(dq, dr) + o
(

W2(µ, ν)
)

∀ν ∈ P(Td).

(ii) We say that ξ belongs to the superdifferential of G at µ and we write ξ ∈
∂·G(µ) if −ξ ∈ ∂·(−G)(µ). The unique element of minimal norm in ∂·G(µ)
belongs to TµP(Td) and is called the gradient of G at µ and is denoted by
∇µG(µ).

(iii) We say that G is differentiable at µ if both ∂·G(µ) and ∂·G(µ) are non empty.
In that case (see e.g. [18]) both sets coincide and

∂·G(µ) ∩ TµP(Td) = ∂·G(µ) ∩ TµP(Td) = {∇µG(µ)}.
Remark 2.6. Here are few remarks.
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(i) We refer the reader to Remark 3.2 of [18] for property (iii) in Definition 2.5.
(ii) Thanks to Proposition 8.5.4 of [4], note that (2.2) holds for ξ if and only

if it holds for any ξ0 ∈ L2(µ) such that ξ0 − ξ belongs to the orthogonal
complement of TµP(Td) in L2(µ). Rephrasing, if (2.2) holds for ξ0 ∈ L2(µ)

then it holds for ξ defined as the orthogonal projection of ξ0 onto TµP(Td).

Remark 2.7 (Basic properties of the determinant). Let ξ = (ξij) ∈ R
d×d and denote

by ξ̄ = (ξ̄ij) the matrix of its cofactors.

(i) We can write ξ = LQ where L is lower triangular and Q is orthogonal. Thus,
ξξT = LLT and so,

|det ξ| 2d = |detL| 2d ≤ l211 + · · · + l2dd

d
≤ |L|2

d
=

|ξ|2
d
.

(ii) We have ∂ξij
det ξ = ξ̄ij and so, by (i), if d > 1 then

(2.3) |∂ξij
det ξ| ≤ |ξ|d−1

√
d− 1

d−1

and, using the fact that d2 ≤ 4(d − 1)d−1 we conclude that

(2.4) |∇ξ det ξ| ≤ 2|ξ|d−1

If d = 1 then det ξ = ξ. In that case (2.4) continues to hold.

2.2. Assumptions. We state here general assumptions that will be used in the
manuscript. In the second part of the paper (from Section 6 on) we will further
assume that the functions F,F , u∗,U∗ have particular forms.

Let

(2.5) κ ≥ 1

be a given constant. We assume we have a differentiable function

F : T
d × P(Td) → R

and a differentiable κ–Lipschitz function

F : P(Td) → R

such that for any q ∈ T
d and any µ ∈ P(Td),

(2.6) ∇qF (q, µ) = ∇µF(µ)(q),

and
(2.7)
∣

∣

∣

∣

F(ν) −F(µ) −
∫

Td×Td

∇µF(µ)(q) · (y − q)γ(dq, dy)

∣

∣

∣

∣

≤ κ

∫

Td×Td

|q − y|2
Tdγ(dq, dy),

for all ν ∈ P(Td) and all γ ∈ Γ(µ, ν)
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We further assume that

(2.8) ∇qF (q, µ), ∇qqF (q, µ), ∇qqqF (q, µ) exist and are continuous,

(2.9) ‖∇qF‖∞, ‖∇qqF‖∞, ‖∇qqqF (q, µ)‖∞ ≤ κ,

and

(2.10) ∇qF is κ-Lipschitz.

We assume to be given a κ–Lipschitz function

u∗ : T
d ×P(Td) → R

such that

(2.11) |u∗| ≤ κ.

We assume there is a differentiable κ–Lipschitz function

U∗ : P(Td) → R

such that for any q ∈ T
d and any µ ∈ P(Td),

(2.12) ∇qu∗(q, µ) = ∇µU∗(µ)(q),

and
(2.13)
∣

∣

∣

∣

U∗(ν) − U∗(µ) −
∫

Td×Td

∇µU∗(µ)(q) · (y − q)γ(dq, dy)

∣

∣

∣

∣

≤ κ

∫

Td×Td

|q−y|2
Tdγ(dq, dy),

for all ν ∈ P(Td) and all γ ∈ Γ(µ, ν).
We further assume that

(2.14) ∇qu∗, ∇qqu∗, ∇qqqu∗ exist and are continuous,

(2.15) ||∇qu∗||∞, ||∇qqu∗||∞, ||∇qqqu∗||∞ ≤ κ,

and

(2.16) ∇qu∗ is κ-Lipschitz.

Remark 2.8. Observe that the requirement on F in (2.7) is more restrictive than
2κ–geodesic convexity and 2κ–geodesic concavity (see Proposition 4.2 of [3]) since
we do not require that γ ∈ Γ0(µ, ν). A similar remark applies to (2.13).

If s ∈ [0, T ] and σ ∈ AC2
(

0, T ;P(Td)
)

has v as a velocity, we define the augmented
action

A(s;σ,v) :=

∫ s

0
L(σl,vl)dl + U∗(σ0).
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For s ∈ [0, T ] and µ ∈ P(Td), we define the map

Ms[µ] : C
(

[0, T ] × T
d; Td

)

→ C
(

[0, T ] × T
d; Td

)

by

Ms[µ](S)(t, q) = q + (t− s)∇qu∗
(

S0(q), S0
#µ

)

+

∫ s

t
dl

∫ l

0
∇qF

(

Sτ (q), Sτ
#µ

)

dτ.(2.17)

where we used the notation Sτ for S(τ, ·).
Example 2.9. Let φ, U0, U1 ∈ C3(Td) be such that φ and U1 are even and (6.1)
holds. For any q ∈ T

d, µ ∈ P(Td) we set

u∗(q, µ) = U0(q) + U1 ∗ µ(q), F (q, µ) = φ ∗ µ(q),

(2.18) U∗(µ) =

∫

Td

(

U0 +
1

2
U1 ∗ µ

)

(y)µ(dy),

(2.19) F(µ) =
1

2

∫

Td

φ ∗ µ(y)µ(dy).

We have

∇qu∗(q, µ) = ∇U0(q) + ∇U1 ∗ µ(q), ∇qF (q, µ) = ∇φ ∗ µ(q),

and it can be shown, using techniques of [4], that F , F , u∗ and U∗ satisfy all the
assumptions of this section.

3. Uniqueness of a fix point of Ms[µ].

Throughout this section, T > 0 is a prescribed number. Further restrictions on
T will be placed later. We denote CT := T (1 + T ).

3.1. Elementary properties of Ms[µ]. Let

S ∈W 1,∞
(

[0, T ] × T
d; Td

)

.

Using the notation St = S(t, ·) we have

(3.1) ∂t

(

Ms[µ](S)
)

(t, q) = ∇qu∗
(

S0(q), S0
#µ

)

−
∫ t

0
∇qF (Sl(q), Sl

#µ)dl,

(3.2) ∂tt

(

M [µ](S)
)

(t, q) = −∇qF (St(q), St
#µ)
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and

∇qMs[µ](S)(t, q) = Id + (t− s)∇qqu∗
(

S0(q), S0
#µ

)

∇qS
0(q)

+

∫ s

t
dl

∫ l

0
∇qqF (Sτ (q), Sτ

#µ)∇qS
τ (q)dτ.(3.3)

Hence

∇tqMs[µ](S)(t, q) = ∇qqu∗
(

S0(q), S0
#µ

)

∇qS
0(q)

−
∫ t

0
∇qqF

(

Sτ (q), Sτ
#µ

)

∇qS
τ (q)dτ.(3.4)

Lemma 3.1. Let S ∈W 2,∞
(

[0, T ] × T
d; Td

)

and let A > 0 be such that

||∇qS||∞, ||∇qqS||∞ ≤ A.

Then for any µ ∈ P(Td) and any s ∈ [0, T ] we have:

(i)
(3.5)

||Ms[µ](S)||∞ ≤
√
d

2
+ κCT , ||∂tMs[µ](S)||∞ ≤ κ(1 + T ), ||∂ttMs[µ](S)||∞ ≤ κ.

(ii)

(3.6) ||∇qMs[µ](S)||∞ ≤
√
d+ κACT , ||∇tqMs[µ](S)||∞ ≤ κA(1 + T ).

(iii)

||∇qqMs[µ](S)||∞ ≤ κA(1 +A)CT .

Proof. To show (i) we use (2.9) and (2.15) to obtain the first inequality in (i). We
use the formulas for first and second derivatives of Ms[µ](S) with respect to t, given
by (3.1) and (3.2) and then use (2.9) and (2.15) to obtain the second and third
inequalities in (i). Similarly, the inequalities in (3.6) are obtained from (3.3) and
(3.4), using (2.9) and (2.15). To get the inequality in (iii) we differentiate (3.3) with
respect to q and again use (2.9) and (2.15) and the assumptions on S.

We also suppose that A > 0 and T > 0 are such that

(3.7) 3κ
√
d ≤ A, 2T, 3κCT < 1, 4κTA(

√
d+ 1)d−1 ≤ 1.

We observe that the second and third inequalities above give

(3.8) κ(1 +A)CT ≤ 1.

Lemma 3.2. Let µ ∈ P(Td) and let

Σ ∈W 1,∞
(

(0, T ) × (0, T ) × T
d; Td

)

, Σ̄(·, s, ·) := Ms[µ]
(

Σ(s, ·, ·)
)

.
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Then
∥

∥∂sΣ̄
∥

∥

∞
≤ κ

(

1 + T +
√

2T
(

1 +
T

2

)

‖∂sΣ‖∞
)

and
∥

∥∂s∂tΣ̄
∥

∥

∞
≤

√
2κ(1 + T )‖∂sΣ‖∞.

Proof. Since Z → Z#µ is a 1–Lipschitz map of C(Td; Td) into P(Td) and ∇qu∗,∇qF
are κ–Lipschitz, we conclude that maps

Z → ∇qu∗
(

Z(q), Z#µ
)

and Z → ∇qF
(

Zq,Z#µ
)

are
√

2κ–Lipschitz for q ∈ T
d fixed. We use this to obtain the first inequality. The

second inequality is obtained in a similar manner applying the above arguments to
the formula for ∂tΣ̄.

Remark 3.3. The following hold:

(i) The map Z → Z#µ is 1–Lipschitz of C(Td; Td) into P(Td).

(ii) If Z : T
d → T

d is l–Lipschitz, so is µ → Z#µ. As a consequence if Z ∈
C(Td; Td) then ζZ : µ → Z#µ is a continuous map of P(Td) into itself

P(Td). Therefore, if S ∈ C
(

[0, T ]× T
d; Td

)

, then ζS(0,·) is a continuous map

of P(Td) into itself.

Proof. (i) If S1, S2 ∈ C(Td; Td) then

γ := (S1 × S2)#µ ∈ Γ
(

S1#µ, S2#µ
)

.

and so,
W 2

2

(

S1#µ, S2#µ
)

≤ ‖S1 − S2‖2
µ ≤ ‖S1 − S2‖2

∞.

(ii) Let Z : T
d → T

d be l–Lipschitz and let µ1, µ2 ∈ P(Td). If γ ∈ Γ0(µ1, µ2) then

γ̄ := (Z × Z)#γ ∈ Γ(Z#µ1, Z#µ2).

Hence,

W 2
2

(

Z#µ1, Z#µ2

)

≤
∫

Td×Td

|q − r|2
Td γ̄(dq, dr)

=

∫

Td×Td

|Z(x) − Z(y)|2
Tdγ(dx, dy)

≤ l2W 2
2 (µ1, µ2).(3.9)

This proves that ζZ is l–Lipschitz. Let now Z ∈ C(Td; Td) and let {Zk}k be a
sequence of Lipschitz functions that converges uniformly to Z on T

d. By (i)

W2(ζZµ, ζZk
µ) ≤ ‖Z − Zk‖∞

and so, ζZ is continuous as a uniform limit of Lipschitz maps.
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Remark 3.4. The following hold:

(i) By assumption ∇qF and ∇qu∗ are κ–Lipschitz. Since, by Remark 3.3 (i),

Z → Z#µ is a 1–Lipschitz map of C(Td; Td) into P(Td), we conclude that

if s ∈ (0, T ] then Ms[µ] : C
(

[0, T ] × T
d; Td

)

→ C
(

[0, T ] × T
d; Td

)

is Lips-
chitz continuous with the Lipschitz constant which is less than or equal to√

2κCT < 1. Thus Ms[µ] is a contraction.
(ii) If S ∈ C

(

[0, T ]×T
d; Td

)

then, by Remark 3.3 (ii), µ→ S0
#µ is a continuous

map of P(Td) into itself. Since ∇qu∗ is κ–Lipschitz, we obtain that µ →
∇qu∗

(

S0(q), S0
#µ

)

is continuous. We use (i) and the fact that ∇qF is κ–

Lipschitz to conclude that the map (s, S, µ) → Ms[µ](S) is a continuous
map of [0, T ] × C

(

[0, T ] × T
d; Td

)

× P(Td) into C
(

[0, T ] × T
d; Td

)

.

Definition 3.5. We define

(i) CA to be the set of S ∈ C
(

[0, T ] × T
d; Td

)

such that

‖S‖∞ ≤
√
d+ 1

2
, ‖∂tS‖∞ ≤ 2κ,

and

‖∂ttS‖∞ ≤ κ, ‖∇qS‖∞, ‖∇qqS‖∞ ≤ A, ‖∇tqS‖∞ ≤ 3

2
κA.

(ii) We define C∗
A to be the set of Σ ∈ C

(

[0, T ] × [0, T ] × T
d; Td

)

such that for
every s ∈ [0, T ], Σ(·, s, ·) ∈ CA and

‖∂sΣ‖∞ ≤ A, ‖∂tsΣ‖∞ ≤
√

2κ(1 + T )A.

Lemma 3.6. The following hold:

(i) CA is a compact set in C
(

[0, T ] × T
d; Td

)

.

(ii) If s ∈ [0, T ] and µ ∈ P(Td) then Ms[µ] maps CA into itself.

Proof. (i) We omit the proof of (i) because it is elementary.
(ii) Let S ∈ CA. Since 3κCT ≤ 1, we use Lemma 3.1 (i) and the fact that T ≤ 1

to obtain

(3.10) ‖Ms[µ](S)‖∞ ≤
√
d+ 1

2
, ‖∂tMs[µ](S)‖∞ ≤ 2κ, ‖∂ttMs[µ](S)‖∞ ≤ κ.

By (3.7) since κ ≥ 1 we have 3
√
d ≤ A. We use the latter inequality in Lemma 3.1

(ii) and use the fact that 3κCT ≤ 1 to obtain

(3.11) ‖∇qMs[µ](S)‖∞ ≤ A.

The inequality κ(1 + A)CT ≤ 1 implies κA(1 + A)CT ≤ A. This, together with
Lemma 3.1 (iii) gives

(3.12) ‖∇qqMs[µ](S)‖∞ ≤ A.
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Since T ≤ 1, we obtain

‖∇qtMs[µ](S)‖∞ ≤ κA(1 + T ) ≤ 3

2
κA.

This, together with (3.10), (3.11) and (3.12), yields Ms[µ](S) ∈ CA.

Lemma 3.7. Let µ ∈ P(Td) and let Σ ∈ C∗
A. Define

Σ̄(t, s, q) = Ms[µ]
(

Σ(·, s, ·)
)

(t, q) ∀(t, s, q) ∈ [0, T ] × [0, T ] × T
d.

Then Σ̄ ∈ C∗
A.

Proof. Since for any s ∈ [0, T ] we have Σ(·, s, ·) ∈ CA, Lemma 3.6 yields Σ̄(·, s, ·) ∈
CA. By Lemma 3.2, since Σ ∈ C∗

A and T < 1/2, we have

∥

∥∂sΣ̄
∥

∥

∞
≤ κ

(3

2
+

3
√

2

2
TA

)

.

The first inequality in (3.7) ensures that A ≥ 3 and then the third inequality there
gives 12κT ≤ 1. Therefore, using again the first inequality in (3.7),

κ
(3

2
+

3
√

2

2
TA

)

≤ A

2
+

3
√

2

2
· 1

12
A < A.

We use the second inequality in Lemma 3.2 and the fact that
∥

∥∂sΣ̄
∥

∥

∞
≤ A to

complete the proof.

Theorem 3.8. Let µ ∈ P(Td) and let 0 ≤ s ≤ T. Then Ms[µ] admits a unique fixed
point Σs[µ] in C

(

[0, T ] × T
d; Td

)

. Furthermore, Σs[µ] belongs to every closed subset

of C
(

[0, T ] × T
d; Td

)

which is invariant under Ms[µ]. As a consequence we have:

(i) For any k ∈ Z
d,

Σs[µ](t, q + k) = Σs[µ](t, q) + k.

(ii) Σs[µ] ∈ CA.

Proof. Since Ms[µ] is a contraction in C
(

[0, T ]×T
d; Td

)

, it has a unique fixed point

Σs[µ]. Any closed subset C of C
(

[0, T ] × T
d; Td

)

is also a complete metric space.
Hence, if C is invariant under Ms[µ], there must be a unique fixed point of Ms[µ]
in C which, by uniqueness, must be equal to Σs[µ]. Since, by Lemma 3.6, CA is a
compact set invariant under Ms[µ], we thus obtain (ii).

(i) If k ∈ Z
d, the set C which consists of S ∈ C

(

[0, T ]×T
d; Td

)

such that St(q+k) =

St(q) for all t ∈ [0, T ] and all q ∈ T
d, is closed. To show that Σs[µ] ∈ C, its remains

to show that C is invariant under Ms[µ]. If S ∈ C, using the facts that

∇qu∗(·, ν), ∇qF (·, Sτ
#µ) : T

d → R
d,

we obtain Ms[µ](S) ∈ C.



16 W. GANGBO AND A. ŚWIE֒CH

Lemma 3.9. Let µ ∈ P(Td), and let Σ0 ∈ C∗
A. Define inductively Σk

s = Ms[µ](Σk−1
s )

for k ≥ 1. Then the sequence {Σk} converges uniformly to Σ[µ], where Σ[µ](t, s, q) =
Σs[µ](t, q), and Σ[µ] ∈ C∗

A.

Proof. By Lemma 3.7, an induction argument shows that Σk ∈ C∗
A. In particular

for each s ∈ [0, T ], Σk(·, s, ·) ∈ CA. Recall that, by Lemma 3.6, CA is a compact set
in C

(

[0, T ] × T
d; Td

)

and Ms[µ] maps CA into CA. Since Ms[µ] is a contraction we

conclude that {Σk(·, s, ·)}k converges uniformly on [0, T ] × T
d to Σs[µ]. We use the

equicontinuity of {Σk}k to infer its uniform convergence on [0, T ] × [0, T ] × T
d to

Σ[µ]. Since C∗
A is closed for the uniform convergence, Σ[µ] ∈ C∗

A.

Definition 3.10. Under the assumptions of Theorem 3.8, we define Σs[µ] to be the
unique fixed point ofMs[µ] and write Σt

s[µ] in place of Σ[µ](t, s, ·). We will sometimes
also use the notation Σ(t, s, q, µ).

Lemma 3.9 ensures that we can always assume Σ[µ] ∈ C∗
A.

3.2. Differentiability properties of Σs[µ] on [0, T ]×T
d. In the sequel, we assume

that T > 0, A > 0 and (3.7) holds.

Remark 3.11. Let ξ ∈ R
d×d be such that |ξ| ≤ 3/2κA. For any s ∈ [0, T ], we have:

(i)

|det(I + sξ) − 1| ≤ 3

4
.

(ii) I + τsξ is invertible and
∣

∣

∣
(I + τsξ)−1

∣

∣

∣
≤ cd := 8(

√
d+ 1)d−1.

Proof. (i) We use (3.7) to obtain that 3/2κTA < 1 and so, for any τ ∈ [0, 1],

(3.13) |I + τsξ| ≤ |I| + 3

2
κTA ≤

√
d+ 1.

We use write the first order Taylor expansion of det(I + sξ) to obtain τ ∈ [0, 1] such
that

|det(I + sξ) − det I| = s|∇ξ det(I + τsξ) · ξ|.
We then apply (2.4) and (3.7) to conclude that

|det(I + sξ) − det I| ≤ T |ξ|2|I + τsξ|d−1 ≤ 3κTA(
√
d+ 1)d−1 ≤ 3

4
.

(ii) By (i), I + sξ is invertible. Since

(I + sξ)−1 =

(

∇ξ det(I + sξ)
)T

det(I + sξ)
,
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we use (i), (2.4) and (3.13) to conclude that
∣

∣(I + sξ)−1
∣

∣ ≤ 8|I + sξ|d−1 ≤ 8(
√
d+ 1)d−1.

Remark 3.12. If s ∈ [0, T ] and µ ∈ P(Td) then Σs[µ] is the unique solution to the
system of differential equations

(3.14)















∂ttΣ
t
s[µ](q) = −∇qF

(

Σt
s[µ](q), Σt

s[µ]#µ
)

on (0, T ) × T
d

Σs
s[µ](q) = q on T

d

∂tΣ
0
s[µ](q) = ∇qu∗

(

Σ0
s[µ](q), Σ0

s[µ]#µ
)

on T
d.

Lemma 3.13. Let µ ∈ P(Td).

(i) For s ∈ [0, T ] and t ∈ [0, T ] we have 4 det∇qΣ
t
s[µ] ≥ 1.

(ii) For s ∈ [0, T ] and t ∈ [0, T ], Σt
s[µ] : T

d → T
d is a diffeomorphism whose

inverse is denoted by Xt
s[µ].

(iii) There exists a constant CA independent of s and µ such that

‖∂tΣs[µ]‖
W 2,∞

(

(0,T )×Td
), ‖Xs[µ]‖

W 2,∞
(

(0,T )×Td
), ‖∂sXs[µ]‖∞,≤ CA

Proof. Fix t ∈ [0, T ].
(i) Use the second equation in (3.14) to write

Σt
s[µ] = Id + Tζ and so ∇qΣ

t
s[µ] = Id + Tξ,

where,

Tζ =

∫ t

s
∂tΣ

τ
s [µ]dτ and Tξ =

∫ t

s
∇tqΣ

τ
s [µ](q)dτ.

By Theorem 3.8, Σs[µ] ∈ CA and so, ‖ξ‖∞ ≤ 3κA/2. We apply Remark 3.11 to
obtain (i) and

(3.15) ‖(∇qΣ
t
s[µ])−1‖∞ ≤ cd.

(ii) We use the fact that

(3.16) Σs[µ] ∈ CA ⊂W 2,∞
(

(0, T ) × T
d; Td

)

and the Sobolev Embedding Theorem to conclude that

Σs[µ] ∈ C1
(

(0, T ) × T
d; Td

)

.

Since Σs[µ] ∈ CA implies that Tζ(t, ·) is TA–Lipschitz, and the last inequality in
(3.7) yields TA < 1, we conclude that Id + Tζ is one–to–one.
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Let R > 1 and let y ∈ BR−1(0), the ball of radius R − 1 centered at the origin.
We use Σs[µ] ∈ CA to obtain T‖ζ‖∞ < 1 and so, for all q on the boundary of the
bigger ball BR(0), Σs

s[µ](q) 6= y for any s ∈ [0, T ]. Therefore,

f(l) := deg
(

Σl
s[µ], BR(0), y

)

the topological degree of Σl
s[µ] is well defined at y ∈ BR−1(0) (see e.g. [16]). Since

f is a continuous function which assumes only integer values, we conclude that
f(l) = f(0) = 1. This proves that the range of Σl

s[µ] contains BR−1(0). Since
R > 1 is arbitrary, we conclude that the range of Σl

s[µ] contains R
d. In particular,

taking into account that we have already proved that Σt
s[µ] is one–to–one, when

l = t we obtain that Σt
s[µ] : R

d → R
d is a bijection of class C1. This, together with

4 det∇qΣ
t
s[µ] ≥ 1 (by (i)), implies that Xt

s[µ] : R
d → R

d, the inverse of Σt
s[µ], is of

class C1 and satisfies

(3.17) ∇qX
t
s[µ] =

(

∇qΣ
t
s[µ]

)−1
◦Xt

s[µ] =
adj

(

∇qΣ
t
s[µ]

)

det
(

∇qΣt
s[µ]

) ◦Xt
s[µ].

Here, if E is a square matrix, adjE is the transposed matrix of the cofactors of E.
(iii) By (3.15) and (3.17) ‖∇qXs[µ]‖∞ ≤ cd.
Direct computations reveal that

(3.18) ∂tX
t
s[µ] = −∇qX

t
s[µ] ∂tΣ

t
s[µ]◦Xt

s[µ], ∂sX
t
s[µ] = −∇qX

t
s[µ] ∂sΣ

t
s[µ]◦Xt

s[µ].

Thus, using the inequality ‖∇qXs[µ]‖∞ ≤ cd and the fact that Σ[µ] ∈ C∗
A, we obtain

the third inequality in (iii).
Recall that since Σs[µ] is a fixed point for Ms[µ] we have

(3.19) ∂tΣ
t
s[µ](q) = ∇qu∗

(

Σ0
s[µ]q, (Σ0

s[µ])#µ
)

−
∫ t

0
∇qF

(

Στ
s [µ]q,Στ

s [µ]#µ
)

dτ.

We can now differentiate both sides of (3.19) with respect to t, q and use (2.9), (2.15),
Remark 3.3 and the fact that Σs[µ] ∈ CA to obtain a constant CA, independent of s
and µ, such that the first inequality in (iii) holds.

Finally we use again Σs[µ] ∈ CA and differentiate the expressions in (3.17) and
(3.18) with respect to t, q, to obtain that the second derivatives of Xs[µ] are bounded
by a constant CA independent of µ or s.

3.3. s-Orbits passing through µ. As in Subsections 3.1 and 3.2, we assume that
T > 0, A > 0 are such that (3.7) holds.

Given s ∈ [0, T ] we define the s-Orbits through µ by

Os[µ] = {Σt
s[µ]#µ | t ∈ [0, T ]}.
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Definition 3.14. For t ∈ [0, T ], s ∈ [0, T ], q ∈ T
d and µ ∈ P(Td) we define

(3.20) Vt
s[µ] := ∂tΣ

t
s[µ] ◦Xt

s[µ].

Lemma 3.15. Increasing the value of CA we obtain that for all µ ∈ P(Td)

sup
s∈[0,T ]

‖Vs[µ]‖
W 2,∞

(

(0,T )×Td
), ‖∂sV[µ]‖∞, ≤ CA.

Proof. Since
Vt

s[µ] := ∂tΣ
t
s[µ] ◦Xt

s[µ],

the first inequality follows directly from Lemma 3.13. We have

∂sVt
s[µ] ◦ Σt

s[µ] = ∂s∂tΣ
t
s[µ] + ∇q∂tΣ

t
s[µ]∂sX

t
s[µ],

and by (3.18)

∂sX[µ] ◦ Σt
s[µ] = −

(

∇qΣ
t
s[µ]

)−1
∂sΣ

t
s[µ].

Thus, applying once more Lemma 3.13, we obtain the second inequality of the
lemma.

Lemma 3.16. Let t0 ∈ [0, T ] and set σt0 = Σt0
s [µ]#µ. We have:

(i)
Σt

t0 [σt0 ] ◦ Σt0
s [µ] = Σt

s[µ].

(ii) The maps Σt
t0[σt0 ] and Σt0

t [µ] are inverses of each other.
(iii)

Vt
s[µ] = Vt

t0 [σt0 ].

(iv)
∂sΣ

t
s[µ] = −∇qΣ

t
s[µ]Vs

t [µ].

Proof. (i) Set
S̄t = St ◦ S−1

t0
, where St = Σt

s[µ].

Obviously

(3.21) S̄t0 = Id ,

and

(3.22) ∂tS̄0 = ∂tS0 ◦ S−1
t0 = ∇qu∗

(

S0 ◦ S−1
t0 , S0#µ

)

= ∇qu∗
(

S̄0, S̄0#σt0

)

.

We exploit the fact that St satisfies the second order differential equation in (3.14)
to obtain

(3.23) ∂ttS̄t = −∇qF
(

St ◦ S−1
t0 , St #µ

)

= −∇qF (S̄t, S̄t #σt0).

We combine (3.21), (3.22) and (3.23) and apply Remark 3.12 to conclude that S̄ is
the unique fixed point of M [σt0 ]. In other words,

S̄t = Σt
t0 [σt0 ],
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which implies the desired conclusion.
(ii) By the fact that Σ[µ]ss = Id , (i) implies (ii).
(iii) By (i)

∂tΣ
t
s[µ] = ∂tΣ

t
t0 [σt0 ] ◦ Σt0

s [µ].

But (i) allows us to compose the left hand–side of the identity with (Σt
s[µ])−1 and

the right hand–side with (Σt0
s [µ])−1 ◦ (Σt

t0 [σt0 ])
−1 to obtain

∂tΣ
t
s[µ]◦(Σt

s[µ])−1 = ∂tΣ
t
t0 [σt0 ]◦Σt0

s [µ]◦(Σt0
s [µ])−1◦(Σt

t0 [σt0 ])
−1 = ∂tΣ

t
t0 [σt0 ]◦(Σt

t0 [σt0 ])
−1.

This establishes (iii).
(iv) By (i) and (ii) Id = Σt

s[µ] ◦ Σs
t [σt] and so, differentiating both sides of the

identity with respect to s we obtain (iv).

Warning 3.17. It is worth pausing for the following remarks.

(i) We would like to warn the reader that in Lemma 3.16 (i) we are not making
any claim about the identity Σt

t0 [ν] ◦ Σt0
s [µ] = Σt

s[µ] for an arbitrary ν.
Similarly, in Lemma 3.16 (iii), no claim has been made about an identity as
general as Vt

s[µ] = Vt
t0 [ν] for an arbitrary ν.

(ii) We have never attempted to write any identity linking elements of Os[µ]
with those of Os̄[µ] when s̄ 6= s.

4. Properties of Σ in the variables (t, s, q); Continuity in µ.

Throughout this section we assume that T > 0, A > 0 satisfy (3.7).

Definition 4.1. Let

K := [0, T ] × [0, T ] × T
d × P(Td).

We define the master map S : K → K by

S(t, s, q, µ) =
(

t, s,Σt
s[µ](q), µ

)

.

Lemma 4.2. The following hold :

(i) S is continuous and S(·, ·, ·, µ) is 2A–Lipschitz.
(ii) ∂tS, ∂ttS : K → R

d are continuous.
(iii) The map S : K → K is a homeomorphism.
(iv) V : K → R

d is continuous.

Proof. (i) Lemma 3.9 implies that S(·, ·, ·, µ) is 2A–Lipschitz. To complete the proof
of (i) it suffices to show that if {µk}k ⊂ P(Td) converges to µ, setting

Sk = Σ(·, ·, ·, µk), S = Σ(·, ·, ·, µ)

then {Sk}k converges uniformly to S. By Lemma 3.9, Sk is 2A–Lipschitz and so,
{Sk}k is equicontinuous. The Ascoli-Arzela lemma ensures the pre–compactness
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of the sequence in C
(

[0, T ] × [0, T ] × T
d; Td

)

and so, the existence of a point of
accumulation E. We invoke the continuity of M in all its variables as stated in
Remark 3.4 (ii) to conclude that E(·, s, ·) is a fixed point of Ms[µ] for every s. In
other words, E(s, t, q) = Σt

s[µ](q). Thus there is a unique point of accumulation of
{Sk}k, and hence we conclude that the whole sequence {Sk}k converges uniformly
to S.

(ii) By assumption ∇qF and ∇qu∗ are κ–Lipschitz. By (3.1), ∂tΣ is expressed in
terms of Σ. Similarly, by (3.2), ∂ttΣ is expressed in terms of Σ. We use the continuity
property of S to conclude that ∂tS and ∂ttS are continuous.

(iii) By Lemma 3.16 (ii), for any µ ∈ P(Td), S(t, s, ·, µ) : T
d → T

d is bijective. It
thus follows that S is a bijection which is continuous from the compact set K into
K. Hence, S is a homeomorphism.

(iv) Recall that Vt
s[µ] = ∂tΣ

t
s[µ] ◦Xt

s[µ] and so, by (ii) and (iii), V is continuous.

Lemma 4.3. The following functions are continuous and thus they are bounded:

(i) ∇qΣ : K → R
d×d.

(ii) ∇q

(

∂tΣ
)

: K → R
d×d.

(iii) ∂sΣ : K → R
d.

Proof. (i) Let {sk}k, {tk}k ⊂ [0, T ], {qk}k ⊂ T
d and {µk}k ⊂ P(Td) be sequences

converging respectively to s, t, q and µ. We are to show that {∇qΣ
tk
sk

[µk](qk)}k

converges to ∇qΣ[µ](t, s, q). By Theorem 3.8, Σ[µk](·, sk, ·) ∈ CA and so, for any

q̄ ∈ T
d

(4.1)
∣

∣

∣
Σtk

sk
[µk](q̄) − Σtk

sk
[µk](qk) −∇qΣ

tk
sk

[µk](qk) · (q̄ − qk)
∣

∣

∣
≤ A|q̄ − qk|2

2

and

|∇qΣ
tk
sk

[µk](qk)| ≤ A.

Hence {∇qΣ
tk
sk

[µk](qk)}k admits at least one point of accumulation, which we denote
by P0. Since, by Lemma 4.2 (i), Σ is continuous, (4.1) implies

∣

∣

∣
Σt

s[µ](q̄) − Σt
s[µ](q) − P0 · (q̄ − q)

∣

∣

∣
≤ A|q̄ − q|2

2
.

Thus, P0 = ∇qΣ
t
s[µ](q) is the unique point of accumulation. This proves (i).

(ii) Since Σs[µ] is a fixed point of Ms[µ], (3.4) yields

∇tqΣ
t
s[µ] = ∇qqu∗

(

Σ0
s[µ](q),Σ0

s[µ]#µ
)

∇qΣ
0
s[µ](q)

−
∫ t

0
∇qqF

(

Στ
s [µ](q),Στ

s [µ]#µ
)

∇qΣ
τ
s [µ](q)dτ.(4.2)



22 W. GANGBO AND A. ŚWIE֒CH

Lemma 4.2 (i) ensures the continuity of Σ, while (i) of the current lemma ensures
that ∇qΣ is continuous. Since, ∇qqu∗ is continuous, Remark 3.3 implies that

(t, s, q, µ) → ∇qqu∗
(

Σ0
s[µ]q,Σ0

s[µ]#µ
)

is continuous. Similarly, we use the fact that ∇qqF is continuous to obtain that

(t, s, q, µ) →
∫ t

0
∇qqF

(

Στ
s [µ](q),Στ

s [µ]#µ
)

∇qΣ
τ
s [µ](q)dτ

is continuous. Taking all these facts into consideration, representation formula (4.2)
yields the continuity of ∇tqΣ.

(iii) Since, by Lemma 4.2 (iv), V is continuous, and by (ii), ∇qΣ is continuous,
the representation formula for ∂sΣ

t
s[µ] provided by Lemma 3.16 (iv), ensures that

∂sΣ is continuous.

Lemma 4.4. The following maps are continuous and thus they are bounded:

(i) X : K → T
d.

(ii) ∇qX : K → R
d×d.

(iii) ∂tX : K → R
d.

Proof. (i) Lemma 4.2 (iii) gives that X is continuous on the compact set K.
(ii) We use the representation formula (3.17), (i) and Lemma 4.3 (i) to obtain (ii).
(iii) By (3.18)

∂tX
t
s[µ] = −∇qX

t
s[µ]Vt

s[µ]

and so, (ii) and Lemma 4.2 (iv) yield (iii).

5. Minimality properties of Σ.

Throughout this section we assume that T > 0, A > 0 satisfy (3.7). The main
result of this section is the following theorem.

Theorem 5.1. Let s ∈ [0, T ], let µ ∈ P(Td) and let σ ∈ AC2(0, s;P(Td)) be a path
of velocity v such that σs = µ. Then

(5.1) A(s;σ,v) ≥ A(s; σ̄, v̄) +
1 − 3κCT

3T 2

∫ s

0
W 2

2

(

στ , σ̄τ

)

dτ,

where

σ̄t = Σt
s[µ]#µ, v̄t = Vt

s[µ].

As a consequence (σ̄, v̄) is the unique minimizer of (6.2) which will be later consid-
ered in Section 6. Furthermore, for almost every t ∈ (0, s), Vt

s[µ] is the velocity of
minimal norm for σ̄ and it belongs to Tσ̄tP(Td).
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Corollary 5.2. Let s ∈ [0, T ], let µ ∈ P(Td) and as above set

σ̄t = Σt
s[µ]#µ, v̄t = Vt

s[µ].

Then:

(i) If r ∈ (0, T ] and σ ∈ AC2
(

0, r;P(Td)
)

has velocity v and σr = σ̄r then

A(r;σ,v) > A(r; σ̄, v̄)

unless σ = σ̄.
(ii) For every t ∈ [0, T ], Vt

s[µ] is the gradient of a function and so, it belongs to
Tσ̄tP(Td), and ∇qVt

s[µ] is a symmetric matrix.

We postpone the proof of Theorem 5.1 and first derive Corollary 5.2 from Theorem
5.1. In Subsection 5.1 we will first show a discrete version of (5.1) and then use an
approximation argument to prove Theorem 5.1 in its full generality in Subsection
5.2.

Proof of Corollary 5.2. (i) Set

σ∗t = Σt
r[σr]#σr, v∗

t = Vt
r[σr].

By Theorem 5.1

(5.2) A(r;σ,v) > A(r;σ∗,v∗)

unless σ = σ∗. By Lemma 3.16 (i)

(5.3) σ∗t = Σt
r[σr] ◦ Σr

s[µ]#µ = Σt
s[µ]#µ = σ̄t.

By (iii) of the same lemma

(5.4) v∗
t = v̄t.

We have thus established that (σ̄, v̄) = (σ∗,v∗). Using this in (5.2) we conclude
the proof of (i). If we set r = T in the above argument, Theorem 5.1 also gives us
that there is a set E ⊂ (0, T ) of full measure such that Vt

s[µ] belongs to Tσ̄tP(Td) for
every t ∈ E .

(ii) We divide the proof of (ii) into two steps.
Step 1. Assume σs = ̺sLd and infTd ̺s > 0. Since Σt

s[µ]#µ = σ̄t, Lemma 3.13 (i)

implies that σ̄t << Ld and so, there exists a nonnegative function ¯̺t ≥ 0 such that
σ̄t = ¯̺tLd and

(5.5) ̺s(q) = ¯̺t

(

Σt
s[µ]

)

det∇qΣ
t
s[µ].

Since Σs[µ] ∈ CA, we use Remark 2.7 to obtain det∇qΣ
0
s[µ] ≤ Ad/dd/2 ≤ Ad. Thus

(5.5) implies

(5.6) 0 <
1

Ad
inf
Td
̺s ≤ ¯̺t.
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Therefore, if t ∈ E then there exists Ūt ∈W 1,2(Td) such that ∇Ūt = v̄t ∈W 2,∞(Td)d

(by Lemma 3.15) We thus have ∇vt = ∇2Ūt and so, ∇vt is symmetric. Any t ∈ [0, T ]
can be written as the limit of a sequence {tn}n ⊂ E . Since {v̄tn}n converges uniformly
to v̄t and there exists Ūtn ∈ W 1,2(Td) such that v̄tn = ∇Ūtn we obtain a function
Ūt ∈ W 1,2(Td) such that v̄t = ∇Ūt. Hence, vt belongs to Tσ̄tP(Td) and ∇vt is
symmetric for all t ∈ [0, T ].

Step 2. Assume µ ∈ P(Td) is arbitrary. Choose a sequence of positive probability
densities {̺n

T }n ⊂ C(Td) such that inf
Td ̺n

s > 0 and

lim
n→∞

W2(µ
n, µ) = 0,

where we have set µn = ̺n
sLd. Set

σn
t = Σt

s[µ
n]#µ

n, vn
t = Vt

s[µ
n].

Since, by Lemma 4.2, V is continuous, we conclude that {Vt
s[µ

n]}n converges point-
wise to Vt

s[µ] on T
d. By Lemma 3.15 and the Sobolev Imbedding Theorem, {Vs[µ

n]}n

is pre–compact in C1([0, s]×T
d)d and hence it converges to Vs[µ] in the C1–topology.

Thus Vt
s[µ] is the gradient of a function Ūt ∈ C1(Td) and ∇qVt

s[µ] is symmetric.

5.1. Optimality properties of discrete paths. Let s ∈ (0, T ], let

x̄1, · · · , x̄n ∈ T
d

and define xi : [0, T ] → T
d by

xi(t) = Σt
s[µ

x̄](x̄i)

Using (2.6) and (2.12), by the definition of Σ we have

(5.7)







(i) ẍi = −∇µF
(

µx̄
)(

x̄i(t)
)

(ii) xi(s) = x̄i

(iii) ẋi(0) = ∇µU∗

(

µx(0)
)(

xi(0)
)

.

Let

y1, · · · , yn ∈W 1,2
(

0, T ; Td
)

.

Reordering and translating the y1(s), · · · , yn(s) if necessary, we may assume that
when t = s

W 2
2

(

µx(s), µy(s)
)

=
1

n

n
∑

i=1

|xi(s) − yi(s)|2Td =
1

n

n
∑

i=1

|xi(s) − yi(s)|2.

Set

γt =
1

n

n
∑

i=1

δ(xi(t),yi(t))



EXISTENCE OF A SOLUTION TO AN EQUATION OF MEAN FIELD GAMES 25

so that

γs ∈ Γ0

(

µx(s), µy(s)
)

.

We use the identity

|ẏi|2
2n

=
|ẋi|2
2n

+
|ẏi − ẋi|2

2n
+

1

n
(ẏi − ẋi) · ẋi

and integrate by parts to obtain

(5.8)

∫ s

0

|ẏi|2
2n

dt =

∫ s

0

( |ẋi|2
2n

+
|ẏi − ẋi|2

2n
− 1

n
(yi − xi) · ẍi

)

dt+
[

(yi − xi) ·
ẋi

n

]s

0
.

By (2.7)

F
(

µy
)

≤ F
(

µx
)

+
1

n

n
∑

i=1

∇µF
(

µx
)

(xi) · (yi − xi) +
κ

n

n
∑

i=1

|yi − xi|2.

Hence, using (5.7) (i), we conclude that

(5.9)

∫ s

0
F

(

µy
)

dt ≤
∫ s

0

(

F
(

µx
)

− 1

n

n
∑

i=1

ẍi · (yi − xi) +
κ

n

n
∑

i=1

|yi − xi|2
)

dt.

Similarly, (2.13) and (5.7) (iii) imply

(5.10) U∗

(

µy(0)
)

)

≥ U∗

(

µx(0)
)

+
1

n

n
∑

i=1

[ẋi(0) · (yi(0) − xi(0)) − κ|yi(0) − xi(0)|2].

Let v be a velocity for µx and let w be a velocity for µy. In fact wt is uniquely
determined for almost all t ∈ (0, T ). We combine (5.8), (5.9) and (5.10) to conclude
that

A(s;µy,w) −A(s;µx,v) ≥ 1

n

n
∑

i=1

ẋi(s) · (yi(s) − xi(s))

− κ

n

n
∑

i=1

|yi(0) − xi(0)|2

+
1

2n

n
∑

i=1

∫ s

0

(

|ẏi − ẋi|2 − 2κ|yi − xi|2
)

dt.(5.11)

Set

∆i(t) := yi(t) − xi(t) = yi(s) − xi(s) +

∫ t

s
(ẏi(τ) − ẋi(τ))dτ.
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We have for 0 ≤ t ≤ s

|∆i(t)| ≤ |∆i(s)| +
∫ s

0
|∆̇i(τ)|dτ

and so,

|∆i(t)|2 ≤ 3|∆i(s)|2 +
3

2
T

∫ s

0
|∆̇i(τ)|2dτ

This proves that

(5.12) |∆i(0)|2 ≤ 3|∆i(s)|2 +
3

2
T

∫ s

0
|∆̇i(τ)|2dτ

and

(5.13)

∫ s

0
|∆i(t)|2dt ≤ 3T |∆i(s)|2 +

3

2
T 2

∫ s

0
|∆̇i(τ)|2dτ.

We combine (5.11), (5.12) and (5.13) to obtain

A(s;µy,w) −A(s;µx,v) ≥ 1

n

n
∑

i=1

ẋi(s) · ∆i(s)

+
1 − 3κCT

2n

n
∑

i=1

∫ s

0
|∆̇i|2dτ

− κ

n
(1 + 3T )

n
∑

i=1

|∆i(s)|2.(5.14)

We use again (5.13) in (5.14) to obtain

A(s;µy,w) −A(s;µx,v) ≥ 1

n

n
∑

i=1

ẋi(s) · ∆i(s)

+
1 − 3κCT

3T 2n

n
∑

i=1

∫ s

0
|∆i|2dτ

− 1 − 3κCT

Tn

n
∑

i=1

|∆i(s)|2

− κ

n
(1 + 3T )

n
∑

i=1

|∆i(s)|2.(5.15)
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Hence,

A(s;µy,w) −A(s;µx,v) ≥ − 1

n

√

√

√

√

n
∑

i=1

‖ẋi‖2
∞

√

√

√

√

n
∑

i=1

|∆i(s)|2

+
1 − 3κCT

3T 2n

n
∑

i=1

∫ s

0
|∆i|2dτ

− 1 − 3κCT

Tn

n
∑

i=1

|∆i(s)|2

− κ

n
(1 + 3T )

n
∑

i=1

|∆i(s)|2.(5.16)

We now use in (5.16) that Σs ∈ CA and

γt ∈ Γ
(

µx(t), µy(t)
)

, γs ∈ Γ0

(

µx(s), µy(s)
)

, |∆i(s)| = |∆i(s)|Td

to obtain

A(s;µy,w) −A(s;µx,v) ≥ −AW2

(

µx(s), µy(s)
)

−BTW
2
2

(

µx(s), µy(s)
)

+
1 − 3κCT

3T 2

∫ s

0
W 2

2

(

µx(τ), µy(τ)
)

dτ.(5.17)

Here, BT is a constant depending only on T and κ.

5.2. Proof of Theorem 5.1.

Proof of Theorem 5.1. For each integer m ≥ 1, let Pm(Td) denote the set of averages
of m Dirac masses on T

d. Let AC2(0, s;Pm(Td)) denote the set of pairs (σ,w) such
that σ ∈ AC2(0, s;P(Td)) and (σ,w) satisfy the following properties: There exist

yi ∈W 1,2(0, s; Td), for i = 1, · · · ,m
such that

σt =
1

m

m
∑

i=1

δyi(t) and wt ◦ yi = ẏi, i = 1, · · · ,m a.e..

Let s ∈ [0, T ], let µ ∈ P(Td) and let σ ∈ AC2(0, s;P(Td)) be a path of velocity
w such that σs = µ. Proposition 5.1 of [21] provides us with a sequence of pairs
(σm,wm) and a sequence of real numbers {rm}m ⊂ (0, 1) decreasing to 0 such that

(5.18) sup
t∈[0,s]

W2(σ
m
t , σt) ≤ rm,

1

2

∫ s

0
||wm||2σm

t
dt ≤ 1

2

∫ s

0
||w||2σt

dt+ rm.
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We combine (5.17) and (5.18) and use the fact that F and U∗ are κ–Lipschitz to
obtain

(5.19) A(s;σm,wm) ≤ (1 + sκ)rm + κrm + A(s;σ,w).

Let {xm
i (s)}m

i=1 ⊂ T
d be such that

lim
m→∞

r̄m = 0, where r̄m = W2(σ̄
m
s , µ) and σ̄m

s =
1

m

m
∑

i=1

δxm
i (s).

Set

xm
i (t) = Σt

s[σ̄
m
s ](xm

i (s)), v̄m
t = Vt

s[σ̄
m
s ], σ̄ = Σt

s[µ]#µ, v̄t = Vt
s[µ].

Note that

(5.20) σ̄m
t = Σt

s[σ̄
m
s ]#σ̄

m
s

and thus

(5.21) ‖v̄m
t ‖σm

t
= ‖∂tΣ

t
s[σ̄

m
s ]‖σ̄m

s
and ||v̄t||σ̄t = ||∂tΣ

t
s[µ]||µ.

Because {σ̄m
s }m converges to µ, and Σs[σ̄

m
s ] ∈ CA we obtain that {Σs[σ̄

m
s ]} is equicon-

tinuous and so, {Σs[σ̄
m
s ]} converges uniformly to Σs[µ] on [0, s] × T

d. Hence,

(5.22) lim
m→∞

r̃m
1 = 0, where rm

1 = sup
t∈[0,s]

W 2
2 (σ̄m

t , σ̄t).

Similarly, {∂tΣs[σ̄
m
s ]} converges uniformly to ∂tΣs[µ] on [0, s] × T

d. Consequently,
using the identities in (5.21), we have

(5.23) lim
m→∞

rm
2 = 0, where rm

2 = sup
t∈[0,s]

∣

∣

∣
||v̄m

t ||2σm
t
− ||v̄t||2σ̄t

∣

∣

∣
.

Hence, since U∗ and F are Lipschitz, (5.22) and (5.23) imply

(5.24) lim
m→∞

A(s; σ̄m, v̄m) = A(s; σ̄, v̄)

We now apply inequality (5.17) to get

A(s;σm,wm) −A(s; σ̄m, v̄m) ≥ −AW2

(

σm
s , σ̄

m
s

)

−BTW
2
2 (σm

s , σ̄
m
s

)

+
1 − 3κCT

3T 2

∫ s

0
W 2

2

(

σm
τ , σ̄

m
τ

)

dτ.(5.25)

Letting m tend to ∞ in (5.25), we use (5.18), (5.19), (5.22) and (5.24) to obtain

A(s;σ,w) ≥ A(s; σ̄, v̄) +
1 − 3κCT

3T 2

∫ s

0
W 2

2

(

στ , σ̄τ

)

dτ.

This concludes the proof of (5.1).
A straightforward consequence of (5.1) is that (σ̄, v̄) is the unique minimizer in

(6.2).
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Denote by |σ̄′| the metric derivative of σ (see e.g. [4]). By Proposition 8.3.1 of [4]
there exists a velocity v∗ for σ̄ such that for almost every t ∈ (0, s)

(5.26) ||v∗
t ||σ̄t ≤ |σ′|(t) ≤ ||v̄t||σ̄t .

This implies that all inequalities in (5.26) are equalities as otherwise we would get

A(s; σ̄,v∗) < A(s; σ̄, v̄)

which would contradict the minimality property of (σ̄, v̄). By Proposition 8.4.5 of [4],
since we have equalities in (5.26) for almost every t ∈ (0, s), we get v̄t ∈ Tσ̄tP(Td)
for almost every t ∈ (0, s).

6. Hamilton–Jacobi equation on P(Td).

Throughout this section we assume that T > 0, A > 0 satisfy (3.7). We assume
(see Example 2.9) to be given U0 ∈ C3(Td), U1, φ ∈ C3(Td) such that the latter
two functions are even and the three functions satisfy

(6.1) ||φ||C3(Td), 2||U0||C3(Td), 2||U1||C3(Td) ≤ κ.

We assume that for any q ∈ T
d and any µ ∈ P(Td)

F (q, µ) = φ ∗ µ(q), F(µ) =

∫

Td

1

2
φ ∗ µ(y)µ(dy),

so that
∇qF (q, µ) = ∇φ ∗ µ(q).

We set

u∗(q, µ) = U0(q) + U1 ∗ µ(q), U∗(µ) =

∫

Td

(

U0 +
1

2
U1 ∗ µ

)

(y)µ(dy).

For s ∈ [0, T ], µ ∈ P(Td) we define the value function

(6.2) U(s, µ) = inf
{

∫ s

0
L(σ,v)dt + U∗(σ0) | σs = µ

}

,

where the infimum is taken over the set of all pairs (σ,v) such that σ ∈ AC2(0, s;P(Td))
and v is a velocity for σ. Recall that L is defined by (2.1).

Using the terminology of [2] and [20], U is the unique metric viscosity solution to

(6.3)

{

∂tU + H(µ,∇µU) = 0 in (0, T ) × P(Td)
U(0, ·) = U∗ on P(Td).

Furthermore, U satisfies the semigroup property (the so–called dynamic program-
ming principle): For any r ∈ [0, s]

(6.4) U(s, µ) = inf
{

∫ s

r
L(σ,v)ds + U(r, σr) | σs = µ

}

.
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Proposition 6.1. Fix s ∈ [0, T ], µ ∈ P(Td) and set

σ̄t = Σt
s[µ]#µ, v̄t = Vt

s[µ], ∀ t ∈ [0, T ].

Then, for any r ∈ [0, T ], we have

U(r, σ̄r) = A(r; σ̄, v̄),

in particular U(s, µ) = A(s; σ̄, v̄).

Proof. The result is a direct consequence of Corollary 5.2.

Remark 6.2. We recall that U is Lipschitz continuous on [0, T ] × P(Td) (see [20]).

6.1. Semiconvexity/semiconcavity properties of the value function. Fix a
positive integer n. For q = (q1, · · · , qn) ∈ (Td)n and p = (p1, · · · , pn) ∈ (Rd)n we
define

Un
0 (q) =

1

n

n
∑

i=1

U0(qi) +
1

2n2

n
∑

i,j=1

U1(qi − qj)

and

Ln(q, p) =
|p|2
2n

− 1

2n2

n
∑

i,j=1

φ(qi − qj).

We notice that for any q ∈ (Td)n,p ∈ (Rd)n

(6.5) −∇qF (qi, µ
q) = n∇qi

Ln(q,p),

(6.6) ∇qu∗(qi, µ
q) = n∇qi

Un
0 (q).

For x = (x1, · · · , xn) ∈ (Td)n we define

Un(s,x) = inf
y

{

∫ s

0
Ln(y, ẏ)dt + Un

0 (y(0)) | y(0) = x
}

.

Proposition 6.1 implies that Un(s,x) = U(s, µx).

Lemma 6.3. Let s ∈ (0, T ), let x = (x1, · · · , xn) ∈ (Td)n,x∗ = (x∗1, · · · , x∗n) ∈
(Td)n. Then there exists γ ∈ Γ0

(

µx, µx
∗
)

such that

(i)

U
(

s, µx
∗
)

≤ U
(

s, µx
)

+

∫

Td×Td

Vs
s [µx](q) · (b− q)γ(dq, db)

+ κ(1 + s)W 2
2

(

µx, µx
∗
)

.(6.7)
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(ii)

U
(

s, µx
∗
)

≥ U
(

s, µx
)

+

∫

Td×Td

Vs
s [µx](q) · (b− q)γ(dq, db)

− 1

2
W 2

2

(

µx, µx
∗
)

( 1

(T − s)
+ κ(T − s)

)

.(6.8)

Proof. (i) For any t ∈ [0, T ] we set

zi(t) = Σt
s[µ

x](xi), i = 1, · · · , n.
Then Proposition 6.1 yields

(6.9) Un(s,x) = U(s, µx) =

∫ s

0
Ln(z, ż)dt+ Un

0 (z(0)).

Since

żi(0) = ∂tΣ
0
s[µ

x](xi) = ∇qu∗
(

zi(0), µ
z(0)

)

, z̈i(t) = −∇qF (zi(t), µ
z(t)),

(6.5) and (6.6) imply

(6.10) ∇Un
0 (z(0)) =

ż(0)

n
, ∇qi

Ln(z(t), ż(t)) =
z̈(t)

n
.

It follows from (2.7) and (2.13) that the functions Un
0 and Ln(·,p) for every

p ∈ (Rd)n are 2κ/n–concave. We now set

yi(t) = zi(t) + x∗i − xi.

We have

(6.11) Un(s,x∗) ≤
∫ s

0
Ln(y, ẏ)dt + Un

0 (y(0)).

Hence, using (6.9), (6.10), (6.11) and the semiconcavity of Un
0 , Ln(·, ż), we obtain

Un(s,x∗) ≤ Un(s,x) +

∫ s

0
[Ln(y, ẏ) − Ln(z, ż)]dt + Un

0 (y(0)) − Un
0 (z(0))

≤ Un(s,x) +

∫ s

0

z̈

n
· (x∗ − x)dt+

κs

n
|x∗ − x|2 +

ż(0)

n
· (x∗ − x) +

κ

n
|x∗ − x|2

= Un(s,x) +
ż(s)

n
· (x∗ − x) +

κ(1 + s)

n
|x∗ − x|2.

(6.12)

Reordering the points x∗1, · · · , x∗n and translating them if necessary, we may assume
without loss of generality that

(6.13)
1

n

n
∑

i=1

|xi − x∗i |2 = W 2
2

(

µx, µx
∗
)



32 W. GANGBO AND A. ŚWIE֒CH

and thus

1

n

n
∑

i=1

δ(xi,x∗

i ) ∈ Γ0

(

µx, µx
∗
)

.

Therefore (6.12) and (6.13) imply (6.7).
(ii) By Proposition 6.1

(6.14) Un(T, z(T )) =

∫ T

0
Lnz, ż)dt+ Un

0 (z(0)) =

∫ T

s
Ln(z, ż)dt + Un(s,x).

We set

yi(t) = zi(t) +
T − t

T − s
(x∗i − xi), t ∈ [s, T ].

Since y(s) = x∗ and y(T ) = z(T ) use the fact that U satisfies the semigroup property
(6.4) to obtain

Un(s,x∗) ≥ Un(T, z(T )) −
∫ T

s
Ln(y, ẏ)dt

This, together with (6.14) implies

Un(s,x∗) ≥ Un(s,x) +

∫ T

s

(

Ln(z, ż) − Ln(y, ẏ)
)

dt.

Therefore, by the semiconcavity of Ln(·, ż) and (6.10), we obtain

Un(s,x∗) ≥ Un(s,x) − 1

2n

|x∗ − x|2
T − s

+
1

n

∫ T

s

ż · (x∗ − x)

T − s
dt

− 1

n

∫ T

s
z̈ · (x∗ − x)

T − t

T − s
dt− κ

n
|x∗ − x|2T − s

3

≥ Un(s,x) +
ż(s) · (x∗ − x)

n
− |x∗ − x|2

2n

( 1

T − s
+ κ(T − s)

)

.

(6.15)

We conclude the proof arguing as in part (i).

Theorem 6.4. Let µ, µ∗ ∈ T
d and let γ ∈ Γ0

(

µ, µ∗
)

.

(i) If s ∈ [0, T ] then

U
(

s, µ∗
)

≤ U
(

s, µ
)

+

∫

Td×Td

Vs
s [µ](q) · (b− q)γ(dq, db)

+ κ(1 + s)W 2
2

(

µ, µ∗
)

.(6.16)
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(ii) If s ∈ [0, T )

U
(

s, µ∗
)

≥ U
(

s, µ
)

+

∫

Td×Td

Vs
s [µ](q) · (b− q)γ(dq, db)

− 1

2
W 2

2

(

µ, µ∗
)

( 1

(T − s)
+ κ(T − s)

)

.(6.17)

(iii) For any s ∈ (0, T ) and t ∈ [0, T ) we have

∇µU(t, σ̄t) = Vt
s[µ],

where σ̄t = Σt
s[µ]#µ.

Proof. (i) The function U is continuous by Remark 6.2. Since, by Lemma 4.2, V
is continuous, it suffices to prove (6.16) for s, t ∈ (0, T ). Using again the fact that
U and V are continuous, since every µ and µ∗ can be approximated by averages of
Dirac masses, it follows from Lemma 6.3 that there exists γ ∈ Γ0

(

µ, µ∗
)

such that

(i) holds. It remains to show that (i) holds for all γ ∈ Γ0

(

µ, µ∗
)

. We fix such γ, and
let µ∗λ be the geodesic defined by

∫

Td

ϕ(q)µ∗λ(dq) =

∫

Td×Td

ϕ
(

(1 − λ)q + λb
)

γ(dq, db).

By Lemma 7.2.1 of [4], for λ ∈ (0, 1), Γ0

(

µ, µ∗λ
)

contains a unique element γl. Thus,

U(s, µ∗λ) ≤ U(s, µ) +

∫

Td×Td

Vs
s [µ](q) · (b− q)γλ(dq, db) + κW 2

2

(

µ, µ∗λ
)(

1 + s
)

.

Letting λ tend to 1 we obtain (6.16). Similar arguments yield (6.17).
(iii) By (i), Vs

s [µ] belongs to ∂·U(s, µ) ∩ ∂·U(s, µ), whereas Corollary 5.2 ensures
that Vs

s [µ] ∈ TµP(Td). Therefore, by the remark in Definition 2.5 (iii), ∇µU(s, µ) =
Vs

s [µ]. Using Lemma 3.16 (iii) we now have

∇µU(t, σ̄t) = Vt
t [σ̄t] = Vt

s[µ].

Remark 6.5. Lemma 6.3 and Theorem 6.4 correct and sharpen the statements of
Theorem 5.1 (iii) and Theorem 5.2 (iv) of [19].

Lemma 6.6. Let s ∈ (0, T ], let µ ∈ P(Td) and set

vt = Vt
s[µ], σt = Σt

s[µ]#µ.

Then:
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(i) (σ,v) satisfies the following system of equations, where the first identity in
(6.18) holds pointwise,

(6.18)

{

∂tv + ∇vv = −∇qF (·, σt)
v0 = ∇µU∗[σ0] = ∇U0 + ∇U1 ∗ σ0.

(ii) ∇vt is the gradient of a function and thus it is a symmetric matrix for any
t ∈ [0, T ].

Proof. Observe first that by Lemma 3.15 and the Sobolev Imbedding Theorem, v is
continuously differentiable on (0, T ) × T

d.
(i) By the definition of v we have ∂tΣ

t
s[µ] = vt(Σ

t
s[µ]) and so, differentiating with

respect to t and using the first equation in (3.14) we obtain

−∇qF
(

Σt
s[µ](q), Σt

s[µ]#µ
)

= ∂ttΣ
t
s[µ](q)

= ∂tvt

(

Σt
s[µ]q

)

+ ∇vt

(

Σt
s[µ]q

)

∂tΣ
t
s[µ](q)

Thus

−∇qF
(

q, Σt
s[µ]#µ

)

= ∂tvt(q) + ∇vt(q)vt(q),

which gives the first identity in (6.18). The second identity in (6.18) follows from
Theorem 6.4 (iii).

Part (ii) is already stated in Corollary 5.2.

7. Weak solution to the first order Mean Field equations.

Throughout this section we assume that T > 0, A > 0 satisfy (3.7). We also
assume that F , u∗ and U∗ are given through functions φ, U0, and U1 satisfying the
assumptions imposed in Section 6.

Given s ∈ [0, T ], q ∈ T
d, µ ∈ P(Td), we define

(7.1) u(s, q, µ) = u∗
(

q,Σ0
s[µ]#µ

)

−
∫ s

0

( |Vτ
s [µ](q)|2

2
+ F

(

q,Στ
s [µ]#µ

)

)

dτ,

and set

(7.2) σ̄t = Σt
s[µ]#µ and v̄t = Vt

s[µ] ∀ t ∈ [0, T ].

Since, by Lemma 3.16,

Vτ
t [σ̄t] = Vτ

s [µ] and Στ
t [σ̄t]#σ̄t = Στ

t [σ̄] ◦ Σt
s[µ]#µ = Στ

s [µ]#µ = σ̄τ ,

we conclude that

(7.3) u(t, q, σ̄t) = u∗(q, σ̄0) −
∫ t

0

( |Vτ
s [µ](q)|2

2
+ F

(

q,Στ
s [µ]#µ

)

)

dτ, ∀t ∈ [0, T ]

Lemma 7.1. We have, for every s ∈ [0, T ], µ ∈ P(Td):
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(i) for any (t, q) ∈ (0, T )

u(0, ·, µ) = u∗(·, µ) and ∇qu(t, q, σ̄t) = v̄t(q) = ∇µUt(t, σ̄t)(q).

(ii) t→ u
(

t, q, σ̄t

)

is continuously differentiable and

∂t

(

u(t, q, σ̄t)
)

+
|∇qu(t, q, σ̄t)|2

2
+ F (q, σ̄t) = 0, ∀ (t, q) ∈ (0, T ) × T

d.

Proof. (i) The identity u(0, ·, µ) = u∗(·, µ) is straightforward to check.
We substitute Vτ

s [µ] by v̄τ in (7.3) and differentiate the subsequent identity with
respect to q to obtain

∇qu(t, q, σ̄t) = ∇qu∗(q, σ̄0) −
∫ t

0

(

∇T v̄τ (q)v̄τ (q) + ∇qF (q, σ̄τ )
)

dτ.

We use that, by Lemma 6.6 (ii), ∇v̄τ is symmetric and then use Lemma 6.6 (i) to
conclude that

∇qu(t, q, σ̄t) = ∇qu∗(q, σ̄0) −
∫ t

0

(

∇v̄τ (q)v̄s(q) + ∇qF (·, σ̄τ )
)

dτ

= ∇qu∗(q, σ̄0) +

∫ t

0
∂tv̄τ (q)dτ.

We combine this with the fact that, by Lemma 6.6 (i), ∇qu∗(q, σ̄0) = v̄0, and use
Theorem 6.4 (iii) to obtain

(7.4) ∇qu(t, q, σ̄t) = ∇qu∗(q, σ̄0) + v̄t(q) − v̄0(q) = v̄t(q) = ∇µU(t, σ̄t)(q).

(ii) By Lemma 4.2 (iv), V is continuous in all its variables. Since φ and Σ are
continuous we conclude that for every y,

τ → F (q, σ̄τ ) =

∫

Td

φ
(

q − Στ
s [µ](y)

)

µ(dy)

is continuous. Using the representation formula provided by (7.3) we thus conclude
that the function t→ u

(

t, q, σ̄t

)

is continuously differentiable and

∂t

(

u(t, q, σ̄t)
)

+
|Vt

s[µ](q)|2
2

+ F (q, σ̄t) = 0.

We now substitute Vt
s[µ] by ∇qu(t, q, σ̄t) to conclude the proof of (ii).

We now fix s and µ and define the function U (which depends on s and µ) by

U(t, q) ≡ Us,µ(t, q) = u
(

t, q,Σt
s[µ]#µ

)

so that, by (7.3),

U(t, q) = u∗(q, σ̄0) −
∫ t

0

( |v̄τ (q)|2
2

+ F (q, σ̄τ )
)

dτ.
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Corollary 7.2. The following hold:

(i)

U ∈W 2,∞
(

(0, T ) × T
d
)

(ii) U is a classical solution (hence also a viscosity solution) to (7.5) (a), where

(7.5)







(a) ∂tU(t, q) + |∇U(t,q)|2

2 + F (q, σ̄t) = 0
(b) ∂σ̄t + ∇ · (σ̄t∇U) = 0 in D′

(

(0, T )) × T
d
)

(c) U0 = u∗(q, σ̄0), σ̄s = µ.

Moreover, if µ has a density with respect to the Lebesgue measure, then so
does σ̄t for every t ∈ [0, T ].

Proof. By Lemma 7.1, (7.5) (a) holds in the classical sense and

(7.6) ∂tU(t, q) = −|Vt
s[µ](q)|2

2
−

∫

Td

φ
(

q − Στ
s [µ](y)

)

µ(dy), ∇qU(t, q) = Vt
s[µ](q).

Lemma 3.15 guarantees that Vs[µ] belongs to W 2,∞
(

(0, T ) × T
d
)d

, while Theorem

3.8 (ii) ensures that Σs[µ] belongs to W 2,∞
(

(0, T ) × T
d; Td

)

. Hence, by (7.6),

U ∈W 2,∞
(

(0, T )) × T
d
)

and, using the fact that v is a velocity for σ and that ∇qUt = v̄t, we obtain (7.5)
(b). The two identities in (7.5) (c) follow from Lemma 7.1.

It is clear from the definition of σ̄t and the regularity of Xt
s[µ] (the inverse of

Σt
s[µ]) given by Lemma 3.13 (iii), that if µ has a density with respect to the Lebesgue

measure, then so does σ̄t for every t ∈ [0, T ].

We notice that if u(·, q, ·) is regular enough then, by Lemma 9.8,

(7.7) ∂t

(

u(t, q, σ̄t)
)

= ∂tu(t, q, σ̄t) +

∫

Td

∇µu(t, q, σ̄t)(z) · v̄t σ̄t(dz).

When t = s then σ̄t = µ and so, we may then use Lemma 7.1 (i) to substitute
∇qu(s, z, µ) for v̄s(z) in (7.7) and then use Lemma 7.1 (ii) to obtain

∂su(s, q, µ) +

∫

Td

∇µu(s, q, µ)(z) · ∇qu(s, z, µ) µ(dz) +
|∇qu(s, q, µ)|2

2
+ F (q, µ) = 0.

Thus to prove that u is a pointwise (strong) solution to the master equation (1.1),
it suffices to show that u is regular enough in all its variables.

The above comments suggest the following definition of a weak solutions to (1.1).
Let

u : [0, T ] × T
d × P(Td) → R

be a continuous function such that u(0, ·, ·) = u∗.
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Definition 7.3. We say that u is a weak solution to (1.1) if for every s ∈ (0, T ) and
every µ ∈ P(Td) there exists a path σ ∈ AC2

(

0, T ;P(Td)
)

with a velocity v such
that the following hold:

(i) for almost every t ∈ (0, T ), ∇qu(t, ·, σt) exists σt–almost everywhere.
(ii) σs = µ and for almost every t ∈ (0, T )

vt = ∇qu(t, ·, σt), σt–almost everywhere.

(iii) Uµ(t, q) := u(t, q, σt) is a viscosity solution to (7.5) (a).

8. Regularity properties of Σ(t, s, q, ·); A discretization approach.

Throughout this section we assume that T > 0, A > 0 satisfy (3.7) and that F ,
u∗ and U∗ are given through functions φ, U0, and U1 satisfying the assumptions
imposed in Section 6.

We recall that Σ and S are given by Definitions 3.10 and 4.1.

Remark 8.1. Let {ak}k ⊂ [0,∞) be a sequence and let α and β < 1 be two nonneg-
ative numbers such that ak ≤ α+ βak−1 for all natural numbers k. Then

ak ≤ α

k−1
∑

i=1

βi + βka0 ≤ α

1 − β
+ a0.

8.1. Spatial derivatives of the discrete master map. Throughout this subsec-
tion n is a fixed natural number. To x = (x1, · · · , xn) ∈ (Td)n we associate the
measure

µx =
1

n

n
∑

i=1

δxi
.

For s ∈ [0, T ] recall that Ms[µ] is the map defined in (2.17). For x ∈ (Td)n and any
continuous map

S : [0, T ] × [0, T ] × T
d × (Td)n → T

d,

we define
Ms[x](S) := Ms[µ

x](S(·, s, ·,x)),

i.e.

Ms[x](S)(t, q) = q + (t− s)∇U0
(

S(0, s, q,x)
)

+ (t− s)
1

n

n
∑

j=1

∇U1
(

S(0, s, q,x) − S(0, s, xj ,x)
)

+
1

n

n
∑

j=1

∫ s

t
ds

∫ s

0
∇φ

(

S(τ, s, q,x) − S(τ, s, xj ,x)
)

dτ.(8.1)
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Corollary 8.2. Let S0(t, s, q,x) ≡ q. Defining inductively

Sk(t, s, q,x) = Ms[x]
(

Sk−1
)

(t, q),

the following hold:

(i) Sk(·, ·, ·,x) ∈ C∗
A for every x ∈ (Td)n.

(ii) There is a constant CA independent of k such that for any i ∈ {1, · · · , n}

(8.2) ‖∇xi
Sk‖∞, ‖∇xi

∂tS
k‖∞ ≤ CA

n
.

Proof. Since S0(·, ·, ·,x) ∈ C∗
A, Lemma 3.9 implies (i).

(ii) We have

∇xi

(

Sk(t, s, q,x)
)

= (t− s)∇2U0
(

Sk−1(0, s, q,x)
)

∇xi
Sk−1(0, s, q,x)

− 1

n
(t− s)∇2U1

(

Sk−1(0, s, q,x) − Sk−1(0, s, xi,x)
)

∇qS
k−1(0, s, xi,x)

+
1

n
(t− s)

n
∑

j=1

∇2U1
(

Sk−1(0, s, q,x) − Sk−1(0, s, xi,x)
)

∆i(0, q, xj ,x)

− 1

n

∫ s

t
dl

∫ l

0
∇2φ

(

Sk−1(τ, s, q,x)

−Sk−1(τ, s, xi,x)
)

∇qS
k−1(τ, s, xi,x)dτ

+
1

n

n
∑

j=1

∫ s

t
dl

∫ l

0
∇2φ

(

Sk−1(τ, s, q,x)

−Sk−1(τ, s, xj ,x)
)

∆i(τ, q, xj ,x)dτ,(8.3)

where we do not display the s dependence in

∆i(τ, q, xj ,x) := ∇xi
Sk−1(τ, s, q,x) −∇xi

Sk−1(τ, s, xj ,x).

We exploit (8.3) to infer

‖∇xi
Sk‖∞ ≤ κCT

2n
‖∇qS

k−1‖∞ + κT (2 + T )‖∇xi
Sk−1‖∞.

Since Sk−1(·, ·, ·,x) ∈ C∗
A, we conclude that

(8.4) ‖∇xi
Sk‖∞ ≤ κACT

2n
+ 2κCT ‖∇xi

Sk−1‖∞.

We apply Remark 8.1 to (8.4) and use the fact that ∇xi
S0 ≡ 0 to obtain

(8.5) ‖∇xi
Sk‖∞ ≤ κACT

2n(1 − 2κCT )
.
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Direct differentiation yields

∇xi

(

∂tS
k(t, s, q,x)

)

= ∇2U0
(

Sk−1(0, s, q,x)
)

∇xi
Sk−1(0, s, q,x)

− 1

n
∇2U1

(

Sk−1(0, s, q,x) − Sk−1(0, s, xi,x)
)

∇qS
k−1(0, s, xi,x)

+
1

n

n
∑

j=1

∇2U1
(

Sk−1(0, s, q,x) − Sk−1(0, s, xi,x)
)

∆i(0, q, xj ,x)

+
1

n

∫ t

0
∇2φ

(

Sk−1(τ, s, q,x) − Sk−1(τ, s, xi,x)
)

∇qS
k−1(τ, s, xi,x)dτ

− 1

n

n
∑

j=1

∫ t

0
∇2φ

(

Sk−1(τ, s, q,x) − Sk−1(τ, s, xj ,x)
)

∆i(τ, q, xj ,x)dτ.

Estimating we thus obtain

‖∇xi
∂tS

k‖∞ ≤ 2κ(1 + T )‖∇xi
Sk−1‖∞ +

κA(1 + T )

n
.

This, together with (8.5), yields

‖∇xi
∂tS

k‖∞ ≤ 2κ(1 + T )
κACT

2n(1 − 2κCT )
+
κA(1 + T )

n
.

We can choose CA in terms of T, κ and A to conclude the proof of the lemma.

Corollary 8.3. The sequence {Sk}k defined in Corollary 8.2 converges uniformly
on [0, T ] × [0, T ] × T

d × (Td)n to the function S defined by S(t, s, q,x) = Σt
s[µ

x](q).
Furthermore, the following hold:

(i) S satisfies (8.2), S(·, ·, ·,x) ∈ C∗
A for every x ∈ (Td)n, and S(t, s, q,x) =

S(t, s, q, x̄) if x̄ is a permutation of x.
(ii) Increasing the value of CA if necessary we have:

(8.6) ‖∇qxi
S‖∞ ≤ CA

n
, i = 1, ..., n.

(8.7) ‖∇xjxi
S‖∞ ≤ CA

n2
, i, j = 1, ..., n, i 6= j.

(8.8) ‖∇xixi
S‖∞ ≤ CA

n
, i = 1, ..., n.

Proof. By Lemma 3.9, for each x fixed, {Sk(·, ·, ·,x)}k converges uniformly to S(·, ·, ·)
defined by S(t, s, q,x) = Σt

s[µ
x](q). Thanks to the Arzela–Ascoli Lemma, the bounds

on {Sk}k and its derivatives provided by Corollary 8.2 imply that {Sk}k converges
uniformly to S on [0, T ] × [0, T ] × T

d × (Td)n.
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(i) The fact that S satisfies (8.2) and S(·, ·, ·,x) ∈ C∗
A follows from Corollary

8.2. Since for t, s and q fixed, S(t, s, q, ·) depends only on µx then S(t, s, q,x) =
S(t, s, q, x̄) if x̄ is a permutation of x.

(ii) We differentiate both sides of (8.3) with respect to q to obtain an identity
from which we derive the upper bound

‖∇qxi
Sk‖∞ ≤ κCT

(

2‖∇qS
k−1‖∞‖∇xi

Sk−1‖∞ + ‖∇q,xi
Sk−1‖∞

)

+
κCT

2n
‖∇qS

k−1‖2
∞.

This, together with Corollary 8.2 implies

‖∇qxi
Sk‖∞ ≤ κCT ‖∇q,xi

Sk−1‖∞ +
2κACACT

n
+
κA2CT

n
.

We apply Remark 8.1 and use the fact that ‖∇qxi
S0‖∞ = 0 and then replace CA by

an appropriate larger constant, still denoted by CA, such that

‖∇qxi
Sk‖∞ ≤ CA

n
.

Letting k tend to ∞ we obtain (8.6).
For (8.7) we differentiate both sides of (8.3) with respect to xj, j 6= i, and estimate

the subsequent expression to obtain

‖∇xjxi
Sk‖∞ ≤ 2κCT ‖∇xjxi

Sk−1‖∞ +A1‖∇xi
Sk−1‖∞ · ‖∇xj

Sk−1‖∞

+
A2

n

(

‖∇xj
Sk−1‖∞ · ‖∇qS

k−1‖∞ + ‖∇xjqS
k−1‖∞

)

.

for some A1, A2 depending only on κ, T . We then use (i), (8.2) and (8.6) to get

‖∇xjxi
Sk‖∞ ≤ 2κCT ‖∇xjxi

Sk−1‖∞ +
A3

n2

for some A3 depending only on κ, T,A,CA. We now apply Remark 8.1 and use the
fact that ‖∇xlxi

S0‖∞ = 0 and to obtain a constant that we still denote by CA such
that

‖∇xjxi
Sk‖∞ ≤ CA

n2
.

Letting k tend to ∞ yields (8.7).
To obtain (8.8) we differentiate both sides of (8.3) with respect to xi and repeat

similar arguments. However now the differentiation of the second and fourth lines
in (8.3) will produce terms that can only be bounded by

C

n

(

‖∇qS
k−1‖2

∞ + ‖∇qqS
k−1‖∞

)
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for some constant C. This is the reason why we obtain a weaker estimate than (8.7).

Corollary 8.4. Let

s ∈ (0, T ), t̄, t̂ ∈ [0, T ], q̄, q̂ ∈ T
d, x̄, x̂ ∈ (Td)n

be such that

W 2
2

(

µx̄, µx̂
)

=
1

n

n
∑

i=1

|x̂i − x̄i|2Td

Set

(8.9) S̄ = S(t̄, s, q̄, x̄), Ŝ = S(t̂, s, q̂, x̂),

and

(8.10) ∂tS̄ = ∂tS(t̄, s, q̄, x̄), ∇qS̄ = ∇qS(t̄, s, q̄, x̄), ∇xi
S̄ = ∇xi

S((t̄, s, q̄, x̄).

Then there is a constant, still denoted by CA, such that

|Ŝ − S̄ − (t̂− t̄)∂tS̄ −∇qS̄(q̂ − q̄) −
n

∑

i=1

∇xi
S̄(x̂i − x̄i)|

≤ CA

(

(t̂− t̄)2 + |q̂ − q̄|2
Td +W 2

2

(

µx̄, µx̂
)

)

.(8.11)

Proof. We write the Taylor expansion of S around (t̄, q̄, x̄) to obtain that the ex-
pression in the left hand side of (8.11) is bounded by L+K = L+K1 +K2, where

L =
1

2

(

(t̂− t̄)2||∂ttS||∞+

n
∑

i,j=1

|x̂i− x̄i|Td · |x̂j − x̄j|Td‖∇xixj
S‖∞+ |q̂− q̄|2

Td‖∇qqS‖∞
)

and

K1 = ‖∇q∂tS‖∞|t̂− t̄| · |q̂ − q̄| +
n

∑

i=1

‖∇xi
∂tS‖∞|t̂− t̄| · |x̂i − x̄i|Td

and

K2 =

n
∑

i=1

‖∇qxi
S‖∞|q̂ − q̄|Td · |x̂i − x̄i|Td .

Corollaries 8.2 and 8.3 provide us with upper bounds on the partial derivatives of S
up to the second order. These bounds yield
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∑

i6=j

|x̂i − x̄i|Td · |x̂j − x̄j |Td‖∇xixj
S‖∞ ≤ CA

2n2

∑

i6=j

(

|x̂i − x̄i|2Td + |x̂j − x̄j |2Td

)

≤ CA

n

n
∑

i=1

|x̂i − x̄i|2Td(8.12)

and

(8.13)
n

∑

i=1

|x̂i − x̄i|2Td‖∇xixi
S‖∞ ≤ CA

n

n
∑

i=1

|x̂i − x̄i|2Td .

We also have

(8.14) (t̂− t̄)2‖∂ttS‖∞ + |q̂ − q̄|2
Td‖∇qqS‖∞ ≤ κ(t̃− t̄)2 +A|q̃ − q̄|2

Td .

We combine (8.12), (8.13) and (8.14) to conclude that

(8.15) L ≤ C̃A

(

(t̂− t̄)2 + |q̂ − q̄|2
Td +W 2

2

(

µx̄, µx̂
)

)

for some constant C̃A.
Since

‖∇xi
∂tS‖∞|t̂− t̄| · |x̂i − x̄i|Td ≤ CA

n

|t̂− t̄|2 + |x̂i − x̄i|2Td

2
,

summing up we have

(8.16)

n
∑

i=1

‖∇xi
∂tS‖∞|t̂− t̄| · |x̂i − x̄i|Td ≤ CA

2
|t̂− t̄|2 +

CA

2n

n
∑

i=1

|x̂i − x̄i|2Td .

Similarly,

(8.17)

n
∑

i=1

‖∇qxi
S‖∞|q̂ − q̄|Td · |x̂i − x̄i|Td ≤ CA

2
|q̂ − q̄|2

Td +
CA

2n

n
∑

i=1

|x̂i − x̄i|2Td .

Notice also that

(8.18) ‖∇q∂tS‖∞|t̂− t̄| · |q̂ − q̄| ≤ 3κA

4

(

|t̂− t̄|2 + |q̂ − q̄|2
Td

)

.

We combine (8.16), (8.17) and (8.18) to conclude that

K ≤ D̃A

(

(t̂− t̄)2 + |q̂ − q̄|2
Td +W 2

2

(

µx̄, µx̂
)

)

for some constant D̃A. This, together with (8.15), completes the proof of the lemma.

Corollary 8.5. Increasing the value of CA if necessary we have:
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(i)

‖∂tttS‖∞, ‖∇q∂ttS‖∞, ‖∇2
qq∂tS‖∞ ≤ CA.

(ii) For i = 1, ..., n

‖∇xi
∂ttS‖∞, ‖∇q,xi

∂tS‖∞ ≤ CA

n
.

(iii) For i, j = 1, ..., n, i 6= j

1

n
‖∇xixi

∂tS‖∞, ‖∇xixj
∂tS‖∞ ≤ CA

n2
.

Proof. (i) Since

∂ttS(t, s, q,x) = −∇qF (S(t, s, q,x), S(t, s, ·,x)#µ
x)

= − 1

n

n
∑

j=1

∇φ
(

S(t, s, q,x) − S(t, s, xj ,x)
)

,
(8.19)

we have

∂tttS(t, s, q,x)

= − 1

n

n
∑

j=1

∇2φ
(

S(t, s, q,x) − S(t, s, xj ,x)
)(

∂tS(t, s, q,x) − ∂tS(t, s, xj ,x)
)

.

We use the fact that S(·, ·, ·,x) ∈ C∗
A (see Corollary 8.3 (i)) to conclude that

‖∂tttS‖∞ ≤ 2κA.

Similarly, we obtain the remaining inequalities in (i).
(ii) Differentiating both sides of (8.19) with respect to xi we obtain

∇xi
∂ttS(t, s, q,x) =

1

n
∇2φ

(

S(t, s, q,x) − S(t, s, xi,x)
)

∇qS(t, s, xi,x)

− 1

n

n
∑

j=1

∇2φ
(

S(t, s, q,x) − S(t, s, xj ,x)
)(

∇xi
S(t, s, q,x) −∇xi

S(t, s, xj ,x)
)

.

This, together with Corollary 8.3 (i), gives us

‖∇xi
∂ttS‖∞ ≤ κA

n
+

2κCA

n
.

The other inequality in (ii) is proved similarly.
(iii) We differentiate ∇xj

∂tS with respect to xi and use Corollary 8.3.
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Corollary 8.6. Let

t̄, t̂ ∈ [0, T ], q̄, q̂ ∈ T
d, x̄, x̂ ∈ (Td)n

be such that

W 2
2

(

µx̄, µx̂
)

=
1

n

n
∑

i=1

|x̂i − x̄i|2Td .

Using the notation (8.9) and (8.10), increasing the value of CA if necessary, we have

|∂tŜ − ∂tS̄ − (t̂− t̄)∂ttS̄ −∇q∂tS̄(q̂ − q̄) −
n

∑

i=1

∇xi
∂tS̄(x̂i − x̄i)|

≤ CA

(

(t̂− t̄)2 + |q̂ − q̄|2
Td +W 2

2

(

µx̄, µx̂
)

)

.(8.20)

Proof. We exploit Corollary 8.5 to complete the proof in exactly the same way
Corollaries 8.2 and 8.3 are used to prove Corollary 8.4.

8.2. Spatial derivatives of the inverse of the master map. Throughout this
section n is a fixed natural number. We define

S(t, s, q,x) := (t, s,Σt
s[µ

x](q),x) = (t, s, S(t, s, q,x),x),

R(t, s, b,x) := Xt
s[µ

x](b).

By Corollary 8.3, for every s ∈ [0, T ],

S(·, s, ·, ·) ∈W 2,∞
(

(0, T ) × T
d × (Td)n; (0, T ) × T

d × (Td)n
)

.

Denote by I ∈ R
d×d the identity matrix.

We exploit Lemma 4.2 (iii) to infer that S is a homeomorphism and we denote
its inverse by X . Observe that

X (t, s, b,x) =
(

t, s,R(t, s, b,x),x
)

.

Denoting the null d× d matrix by ~0 and the d× 1 null matrix by 0̄ we have

∇(t,q,x)S =



















1 0 · · · 0 0 · · · 0 0 · · · 0 · · · 0 · · · 0
0̄ ∇qS ∇x1

S ∇x2
S · · · ∇xnS

0̄ ~0 I ~0 · · · ~0

0̄ ~0 ~0 I · · · ~0
...

...
. . . I

0̄ ~0 ~0 ~0 · · · I



















and so, exploiting Lemma 3.13 (i), we obtain

(8.21) det∇(t,q,x)S = det∇qS ≥ 1

4
.
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We use the Inverse Function Theorem to conclude that for every s ∈ [0, T ]

(8.22) X (·, s, ·, ·) ∈W 2,∞
(

(0, T ) × T
d × (Td)n; (0, T ) × T

d × (Td)n
)

.

Denote by adj(A) the adjugate of a d× d matrix A so that

adj(A)A = (detA)I.

We have

(8.23) ∇qR =
adj(∇qS)

det∇qS
◦R,

(8.24) ∂tR = −
(adj∇qS

det∇qS
∂tS

)

◦R,

and

(8.25) ∇xi
R = −adj(∇qS)∇xi

S

det∇qS
◦R.

Theorem 8.7. There exists a constant D̄A independent of n such that the following
hold:

(i)

||∂sR||∞, ||∂tR||∞, ||∇qR||∞ ||∂ttR||∞, ||∇qqR||∞, ||∂t∇qR||∞ ≤ D̄A.

(ii) For i = 1, ..., n

||∇xi
R||∞, ||∇xiqR||∞, ||∇xixi

R||∞, ||∂t∇xi
R||∞ ≤ D̄A

n
.

(iii) For i, j = 1, ..., n, i 6= j

||∇xixj
R||∞ ≤ D̄A

n2
.

Proof. We obtain (i) as a consequence of Lemmas 3.13 and 4.4. We differentiate the
expression in (8.25) successively with respect to q, xj , t, use the fact that R(t, s, ·,x)
and S(t, s, ·,x) are inverses of each other, and then we use the bounds obtained in
Corollary 8.3 to conclude that (ii) and (iii) hold.

Remark 8.8. Denoting V (t, s, b,x) := Vt
s[µ

x](b), we have

∇xi
V (t, s, b,x) = ∇q∂tS(t, s,R(t, s, b,x),x)∇xi

R(t, s, b,x)

+ ∇xi
∂tS(t, s,R(t, s, b,x),x).

Therefore, using Corollary 8.3 (i) and the first inequality in Theorem 8.7 (i), we
conclude that, increasing the value of the constant D̄A if necessary,

‖∇xi
V ‖∞ ≤ D̄A

n
.
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Corollary 8.9. For every t, r, s, τ ∈ [0, T ], b, b̄ ∈ T
d and µ, ν ∈ P(Td), we have

|Xr
τ [ν](b̄) −Xt

s[µ](b)| ≤ D̄A

(

|τ − s| + |r − t| + |b̄− b|
Td +W2(ν, µ)

)

.

Proof. Let t, r, s, τ ∈ [0, T ], q, q̄ ∈ T
d and µ, ν ∈ P(Td). Let γ ∈ Γ0(µ, ν). Choose

sequences {(xn
i , y

n
i )}n in the support of γ such that (8.35) holds and

(8.26) W2

(

µx
n

, µy
n)

=
1

n

n
∑

i=1

|xn
i − yn

i |2Td .

It follows from Theorem 8.7 and (8.26) that

|Xr
τ [µx̄

n

](b̄) −Xt
s[µ

x
n

](b)|Td ≤ D̄A

(

|τ − s| + |r − t| + |b̄− b|Td +W2(µ
x̄

n

, µx
n

)
)

.

Since, by Lemma 4.4, X is continuous, it remains to let n tend to ∞ and use (8.35).

8.3. Regularity properties of the master map. Let

B = [0, T ] × [0, T ] × T
d ×

{

(yi, µ
y) : i ∈ {1, · · · , n}

}

.

Let f : B → R be a continuous function such that if

(8.27) s, t ∈ [0, T ], q ∈ T
d, i, j ∈ {1, · · · , n}, x,y ∈ (Td)n

then

(8.28) |f(t, s, q, (yj , µ
y))− f(t, s, q, (xi, µ

x))| ≤ CA

(

|xi − yj|Td +W2

(

µx, µy
)

+
1

n

)

.

For z ∈ T
d and µ ∈ P(Td) we define

g(t, s, q, z, µ) = inf
{

f(t, s, q, (yj, µ
y)) + CA

(

|z − yj|Td +W2

(

µ, µy
)

)}

,

where the infimum is performed over the set of (i,y) such that

(8.29) i ∈ {1, · · · , n}, y ∈ (Td)n.

Lemma 8.10. Suppose (8.28) holds whenever (8.27) holds. Suppose that for any
x ∈ (Td)n f(·, ·, ·, (xi, µ

x)) is CA–Lipschitz. Then

(i) g is
√

3CA–Lipschitz.
(ii) On B we have |g − f | ≤ CA/n.

Proof. (i) For every t, s ∈ [0, T ], q ∈ T
d, g(t, s, q, ·, ·) is

√
2CA–Lipschitz since it is

the infimum of
√

2CA–Lipschitz functions. This, together with the fact that, for
every x ∈ (Td)n, f(·, ·, ·, (xi, µ

x)) is CA–Lipschitz, gives that g is
√

3CA–Lipschitz.
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(ii) It follows from the definition of g that, for every t, s ∈ [0, T ], q ∈ T
d,x ∈

(Td)n, i = 1, ..., n,

g(t, s, q, xi, µ
x) ≤ f(t, s, q, (xi, µ

x)).

Moreover, by (8.28),

g(t, s, q, xi, µ
x) = inf

{

f(t, s, q, (yj , µ
y)) + CA

(

|xi − yj|Td +W2

(

µx, µy
)

)}

≥ inf
{

f(t, s, q, (xi, µ
x)) +CA

(

|xi − yj|Td +W2

(

µx, µy
)

)}

−CA

(

|xi − yj| +W2

(

µx, µy
)

+
1

n

)

= f(t, s, q, (xi, µ
x)) − CA

n
.

We now set for t, s ∈ [0, T ], q ∈ T
d,x ∈ (Td)n, j = 1, ..., n,

(8.30) ζn(t, s, q, (xj , µ
x)) = n∇xj

S(t, s, q,x).

The map ζn is well defined on B. In particular it is periodic in q and if x ∈ R
d, x̄ ∈ R

d

are such that |x = x̄|Td = 0 then ζn(t, s, q, (xj , µ
x)) = ζn(t, s, q, (x̄j , µ

x̄)).

Corollary 8.11. For each natural number n, ζn admits and extension

χn : [0, T ] × [0, T ] × T
d × T

d × P(Td) → R
d×d

such that, increasing the value of CA, we have

(i) χn is CA–Lipschitz.
(ii) On B we have |χn − ζn| ≤ CA/n.

Proof. We first check the Lipschitz property of ζn(·, ·, ·, (xj , µ
x)) for j ∈ {1, · · · , n}

and x ∈ (Td)n. We differentiate with respect to xi the expressions in Lemma 3.16
(iv) to obtain

∇xi
∂sΣ

t
s[µ

x] = −∇q xi
Σt

s[µ
x]Vs

t [µx] −∇qΣ
t
s[µ

x]∇xi
Vs

t [µx].

We use the bound on |∇qxi
Σ| provided by Corollary 8.3, the bound on |V| provided

by Lemma 3.15, the bound on |∇xi
Vt

s[µ
x](q)| provided by Remark 8.8, and the

fact that ‖∇qΣ‖∞ ≤ A to conclude that ζn(t, ·, q, xj , µ
x) is C̃A–Lipschitz for some

constant C̃A. Corollary 8.3 (i) gives that ζn(·, s, q, xj , µ
x) is CA–Lipschitz, while (8.6

) ensures that ζn(t, s, ·, xj , µ
x) is CA–Lipschitz. Corollaries 8.2 and 8.3 imply that

ζn is continuous. It remains to show that ζn satisfies (8.28) whenever (8.27) holds,
so that we may apply Lemma 8.10 to each component of ζn to conclude the proof.

Let t ∈ [0, T ], s ∈ (0, T ), and q ∈ T
d. Let x,y ∈ (Td)n and 1 ≤ i < j ≤ n. Since

S(t, s, q,x) is invariant under the permutation of the x1, · · · , xn, and ∇xj
S(t, s, q,x)
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is periodic in the x variables, rearranging and translating the points, we can assume
that

∑

k 6=i,j

|xk − yk|2 ≤W 2
2 (µx, µy)

and
|xj − yi| = |xj − yi|Td , |xi − yj| = |xi − yj|Td .

Moreover, using again the invariance under permutations, we have

∇xj
S(t, s, q,y)(8.31)

= ∇x1
S(t, s, q, yj , yi, y1, · · · , yi−1, yi+1, · · · , yj−1, yj+1, · · · , yn),

and

∇xi
S(t, s, q,x)(8.32)

= ∇x1
S(t, s, q, xi, xj , x1, · · · , xi−1, xi+1, · · · , xj−1, xj+1, · · · , xn).

We combine (8.31) and (8.32) to obtain

|∇xj
S(t, s, q,y) −∇xi

S(t, s, q,x)| ≤ ‖∇x1,x1
S‖∞|yj − xi|

+ ‖∇x1,x2
S‖∞|yi − xj|

+
i−1
∑

k=1

‖∇x1,xk+2
S‖∞|yk − xk|

+

j−1
∑

k=i+1

‖∇x1,xk+1
S‖∞|yk − xk|

+

n
∑

k=j+1

‖∇x1,xk
S‖∞|yk − xk|.

Therefore, by Corollary 8.3,

|∇xj
S(t, s, q,y) − ∇xi

S(t, s, q,x)| ≤ CA

n
|yj − xi| +

CA

n2
|yi − xj|

+
CA

n2

∑

k 6=i,j

|yk − xk|

≤ CA

n
|yj − xi|Td +

CA

n2
|yi − xj |Td

+
CA

√
n

n2

√

∑

k 6=i,j

|yk − xk|2.

≤ CA

n

(

|yj − xi|Td +

√
d

2n
+W2 (µx, µy)

)

,(8.33)
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where we used the fact that the diameter of T
d is

√
d/2. Consequently,

n|∇xj
S(t, s, q,y) −∇xi

S(t, s, q,x)| ≤
√
dCA

(

|yj − xi|Td +W2

(

µx, µy
)

+
1

n

)

,

which proves the each component of ζn satisfies (8.28).

Theorem 8.12. The following hold:

(i) For s ∈ [0, T ], Σs is differentiable on [0, T ] × T
d × P(Td).

(ii) Increasing the value of CA, there is a CA–Lipschitz map

∇̄µΣ : [0, T ] × [0, T ] × T
d × T

d × P(Td) → R
d×d

such that for any s, r, t ∈ [0, T ], q̄, q ∈ T
d, µ, ν ∈ P(Td), and any γ ∈ Γ0(µ, ν)

∣

∣

∣
Σr

s[ν](q̄) − Σt
s[µ](q) − ∂tΣ

t
s[µ](q)(r − t) −∇qΣ

t
s[µ](q)(q̄ − q)

−
∫

Td×Td

∇̄µΣt
s[µ](q, z)(y − z)γ(dz, dy)

∣

∣

∣

≤ CA

(

(r − t)2 + |q̄ − q|2
Td +W 2

2

(

µ, ν
)

)

.(8.34)

Proof. Let µ, ν ∈ P(Td), r, s, t ∈ [0, T ] and q̄, q ∈ T
d. Choose a sequence

γn =
1

n

n
∑

i=1

δ(xn
i ,yn

i )

such that for each i ∈ {1, · · · , n}, (xn
i , y

n
i ) belongs to the support of γ and {γn}n

converges narrowly to γ in P(Td ×T
d). Note that since each (xn

i , y
n
i ) belongs to the

support of γ, {(xn
i , y

n
i )}n

i=1 is | · |Td–monotone (cf. [4]) and so

γn ∈ Γ0

(

µx
n

, µy
n
)

.

Furthermore,

(8.35) lim
n→∞

W2

(

µ, µx
n)

= lim
n→∞

W2

(

ν, µy
n)

= 0.

Let the map ζn be defined as in (8.30) and let χn be as in Corollary 8.11. By
Corollary 8.4

∣

∣

∣
Σr

s[µ
y

n

](q̄) − Σt
s[µ

x
n

](q) − ∂tΣ
t
s[µ

x
n

](q)(r − t)

−∇qΣ
t
s[µ

x
n

](q)(q̄ − q) −
∫

Td×Td

ζn(t, s, q, z, µx
n

)(y − z)γn(dz, dy)
∣

∣

∣

≤ CA

(

(r − t)2 + |q̄ − q|2 +W 2
2

(

µx
n

, µy
n)

)

.
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Thus,
∣

∣

∣
Σr

s[µ
y

n

](q̄) − Σt
s[µ

x
n

](q) − ∂tΣ
t
s[µ

x
n

](q)(r − t)

−∇qΣ
t
s[µ

x
n

](q) · (q̄ − q) −
∫

Td×Td

χn(t, q, z, µx
n

)(y − z)γn(dz, dy)
∣

∣

∣

≤ CA

(

(s− t)2 + |q̄ − q|2 +W 2
2

(

µx
n

, µy
n)

)

+
∣

∣

∣

∫

Td×Td

(

ξn(t, q, z, µx
n

) − ζn(t, q, z, µx
n

)
)

(y − z)γn(dz, dy)
∣

∣

∣
.

≤ CA

(

(r − t)2 + |q̄ − q|2 +W 2
2

(

µx
n

, µy
n)

)

+
CA

n
W2

(

µx
n

, µy
n)

.(8.36)

By Theorem 8.7 (ii), {χn}n is uniformly bounded, and by Corollary 8.11 (i) the
sequence is CA–Lipschitz. Thus the Arzela–Ascoli lemma provides us with a subse-
quence {χnm}m which converges uniformly to a CA–Lipschitz map

∇̄µΣ : [0, T ] × [0, T ] × T
d × T

d × P(Td) → R
d×d.

By Lemma 4.2, Σ and ∂tΣ are continuous while, by Lemma 4.3, ∇qΣ is continuous.
Thus, replacing n by nm in (8.36) and then letting m tend to ∞ we obtain that (ii)
is satisfied.

Using Corollaries 8.5 and 8.6 and arguing similarly as we did to obtain Corollary
8.11 and then Theorem 8.12, we can derive the following theorem. We leave the
details to the readers.

Theorem 8.13. The following hold:

(i) For s ∈ [0, T ], ∂tΣs is differentiable on (0, T ) × T
d × P(Td).

(ii) Increasing the value of CA, there is a CA–Lipschitz map

ξ : [0, T ] × [0, T ] × T
d × T

d × P(Td) → R
d×d

such that for any s, r, t ∈ (0, T ), q̄, q ∈ T
d, µ, ν ∈ P(Td), and any γ ∈

Γ0(µ, ν) we have
∣

∣

∣
∂tΣ

r
s[ν](q̄) − ∂tΣ

t
s[µ](q) − ∂ttΣ

t
s[µ](q)(r − t) −∇q∂tΣ

t
s[µ](q)(q̄ − q)

−
∫

Td×Td

ξt
s[µ](q, z)(y − z)γ(dz, dy)

∣

∣

∣

≤ CA

(

(r − t)2 + |q̄ − q|2 +W 2
2

(

µ, ν
)

)

.(8.37)
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8.4. Regularity properties of the inverse master map. In this subsection, we
use the notation of Subsection 8.2.

Theorem 8.14. The following hold:

(i) X is continuously differentiable on [0, T ] × [0, T ] × T
d × P(Td).

(ii) The maps ∂tX, ∇bX are continuous on [0, T ] × [0, T ] × T
d ×P(Td) and the

map

∇̄µX
t
s[µ](b, z) := −∇bX

t
s[µ](b) ∇̄µΣt

s[µ]
(

Xt
s[µ](b), z

)

is continuous on [0, T ] × [0, T ] × T
d × T

d × P(Td).
(iii) Increasing suitably the value of D̄A, we obtain that for any r, t ∈ [0, T ],

b̄, b ∈ T
d, µ, ν ∈ P(Td), and any γ ∈ Γ0(µ, ν), we have

∣

∣

∣
Xr

s [ν](b̄) −Xt
s[µ](b) − ∂tX

t
s[µ](b)(r − t) −∇bX

t
s[µ](b)(b̄ − b)

−
∫

Td×Td

∇̄µX
t
s[µ](b, z)(y − z)γ(dz, dy)

∣

∣

∣

≤ D̄A

(

(r − t)2 + |b̄− b|2 +W 2
2

(

µ, ν
)

)

.(8.38)

Proof. (i) Part (i) will follow once we show (ii) and (iii).
(ii) By Lemma 4.4, X, ∂tX and ∇bX are continuous. Since, by Theorem 8.12

(ii), ∇̄µΣ is continuous, we conclude the proof of (ii).

(iii) Let µ, ν ∈ P(Td), r, t ∈ [0, T ] and b̄, b ∈ T
d. Set

q = Xt
s[µ](b), q̄ = Xr

s [ν](b̄), i.e. b = Σt
s[µ](q), b̄ = Σr

s[ν](q̄).

Recall that, by (3.17) and (3.18), we have

∇bX
t
s[µ](b) =

(

∇qΣ
t
s[µ]

)−1 ◦Xt
s[µ](b) =: E,

∂tX
t
s[µ](b) = −∇bX

t
s[µ](b)∂tΣ

t
s[µ] ◦Xt

s[µ](b) = −E∂tΣ
t
s[µ] ◦Xt

s[µ](b),

and, by (3.15), |E| ≤ cd. Therefore
∣

∣

∣

∣

Xr
s [ν](b̄) −Xt

s[µ](b) − ∂tX
t
s[µ](b)(r − t) + ∇bX

t
s[µ](b)(b̄− b)

−
∫

Td×Td

∇̄µX
t
s[µ](b, z)(y − z)γ(dz, dy)

∣

∣

∣

∣

=

∣

∣

∣

∣

E
[

∇qΣ
t
s[µ](q)(q̄ − q) + ∂tΣ

t
s[µ](q)(r − t) −

(

Σr
s[ν](q̄) − Σt

s[µ](q)
)

+

∫

Td×Td

∇̄µσ
t
s[µ](q, z)(y − z)γ(dz, dy)

]

∣

∣

∣

∣

≤ cdCA

(

(r − t)2 + |Xt
s[ν](b̄) −Xr

s [µ](b)|2 +W 2
2

(

µ, ν
)

)

.
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It remains to use Corollary 8.9 to find an appropriately large constant D̄A so that
(8.38) is satisfied.

8.5. First order expansion of V. Recall that, by Definition 3.14, for t, s ∈ [0, T ],
q ∈ T

d and µ ∈ P(Td),
Vt

s[µ] := ∂tΣ
t
s[µ] ◦Xt

s[µ].

We can differentiate the above expression by Lemma 3.13 (iii) to obtain:

(8.39) ∂tVt
s[µ] = ∂ttΣ

t
s[µ] ◦Xt

s[µ] + ∇q∂tΣ
t
s[µ] ◦Xt

s[µ] ∂tX
t
s[µ],

(8.40) ∇bVt
s[µ] = ∇q∂tΣ

t
s[µ] ◦Xt

s[µ] ∇bX
t
s[µ].

Set

∇̄µVt
s[µ](b, z) = ξt

s[µ]
(

Xt
s[µ](b), z

)

+ ∇q∂tΣ
t
s[µ] ◦Xt

s[µ](b) ∇̄µX
t
s[µ](b, z).

Corollary 8.15. The following hold:

(i) ∂tV and ∇bV are continuous on [0, T ] × [0, T ] × T
d × P(Td).

(ii) ∇̄µV is continuous on [0, T ] × [0, T ] × T
d × T

d × P(Td).

(iii) Increasing the value of D̄A, we obtain that for any s, r, t ∈ (0, T ), b̄, b ∈ T
d,

µ, ν ∈ P(Td), and any γ ∈ Γ0(µ, ν), we have
∣

∣

∣
Vr

s [ν](b̄) − Vt
s[µ](b) − ∂tVt

s[µ](b)(r − t) −∇bVt
s[µ](b)(b̄ − b)

−
∫

Td×Td

∇̄µVt
s[µ](b, z)(y − z)γ(dz, dy)

∣

∣

∣

≤ D̄A

(

(r − t)2 + |b̄− b|2 +W 2
2

(

µ, ν
)

)

.(8.41)

Proof. (i) By Lemma 4.4, X, ∂tX and ∇bX are continuous. By Lemma 4.3 (ii),
∇q∂tΣ is continuous, while Lemma 4.2 (ii) ensures that ∂ttΣ is continuous. Using
the representation formulas (8.39) and (8.40) we thus conclude the proof of (i).

(ii) Since X, ∇q∂tΣ, ξ and ∇̄µX are all continuous, we obtain that ∇̄µV is con-
tinuous.

(iii) We combine Theorems 8.13 and 8.14, to obtain
∣

∣

∣
Vr

s [ν](b̄) − Vt
s[µ](b) − ∂tVt

s[µ](b)(r − t) −∇bVt
s[µ](b)(b̄ − b)

−
∫

Td×Td

∇̄µVt
s[µ](b, z)(y − z)γ(dz, dy)

∣

∣

∣

≤ CA

(

(r − t)2 + |Xr
s [µ](b̄) −Xt

s[µ](b)|2 +W 2
2

(

µ, ν
)

)

+D̄A‖∇q∂tΣ‖∞
(

(r − t)2 + |b̄− b|2 +W 2
2

(

µ, ν
)

)

≤ D̄A

(

(r − t)2 + |b̄− b|2 +W 2
2

(

µ, ν
)

)

,
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for some appropriately large constant, still denoted by D̄A. Above we used Corollary
8.9 and the fact that Σs[µ] ∈ CA to obtain the last inequality.

8.6. Smoothness properties of the velocity |Vs|2. We set

V̄ = ∇̄µVV

Corollary 8.16. The function |Vs|2 is is continuously differentiable on (0, T )×T
d×

P(Td) for every s ∈ (0, T ). More precisely, increasing the value of D̄A as necessary,
the following hold:

(i) ∂tV · V, ∇qVV and V̄ are continuous.

(ii) For any s, r, t ∈ (0, T ), b̄, b ∈ T
d, µ, ν ∈ P(Td), and any γ ∈ Γ0(µ, ν) we

have
∣

∣

∣

|Vr
s [ν](b̄)|2

2
− |Vt

s[µ](b)|2
2

− (∂tV · V)ts[µ](b)(r − t)

−(∇qVV)ts[µ](b) · (b̄− b) −
∫

Td×Td

V̄t
s[µ](b, z) · (y − z)γ(dz, dy)

∣

∣

∣

≤ D̄A

(

(r − t)2 + |b̄− b|2 +W 2
2

(

µ, ν
)

)

.(8.42)

Proof. The continuity of ∂t · VV,∇qVV and V̄ follows from the continuity of V, ∂tV,
∇qV and ∇̄µV. Part (ii) is a direct consequence of Corollary 8.15.

9. Strong solutions to the master equation.

Throughout this section we assume that T > 0, A > 0 satisfy (3.7). As in Section 6
we assume that F,F , u∗ and U∗ are given through functions φ, U0, and U1 satisfying
the assumptions imposed in that section. Using the notation of Section 7, we define

u : [0, T ] × T
d × P(Td) → R

by

(9.1) u(s, q, µ) = u∗
(

q,Σ0
s[µ]#µ

)

−
∫ s

0

( |V l
s[µ](q)|2

2
+ F

(

q, (Σl
s[µ])#µ

)

)

dl

for s ∈ [0, T ], q ∈ T
d and µ ∈ P(Td).

9.1. Regularity of u with respect to the µ variable. We set

N t
s [µ](q) = −

∫

Td

∇φ
(

q − Σt
s[µ](y)

)

· ∂tΣ
t
s[µ](y)µ(dy)
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and

N̄ t
s [µ](q, y) = −(∇qΣ

t
s[µ](y))T∇φ

(

q − Σt
s[µ](y)

)

−
∫

Td

(∇̄µΣt
s[µ](u, y))T∇φ

(

q − Σt
s[µ](u)

)

µ(du),

where (∇qΣ
t
s[µ](y))T and (∇̄µΣt

s[µ](u, y))T are the transpositions of the matrices
∇qΣ

t
s[µ](y) and ∇̄µΣt

s[µ](u, y).

Lemma 9.1. The function (t, s, q, µ) → F
(

q,Σt
s[µ]#µ

)

is continuously differentiable
in the following sense:

(i) N and (t, s, q, µ) → ∇qF
(

q,Σt
s[µ]#µ

)

are continuous on [0, T ]× [0, T ]×T
d×

P(Td), and N̄ is continuous on [0, T ] × [0, T ] × T
d × T

d × P(Td).
(ii) Suitably increasing the value of D̄A we have that for any

(s, t, r, q, q̄, µ, ν) ∈ [0, T ] × [0, T ] × [0, T ] × T
d × T

d × P(Td) × P(Td)

and any γ ∈ Γ0(µ, ν),

∣

∣

∣
F

(

q̄, σ̄r

)

− F (q, σt) − (r − t)N t
s [µ](q) −∇qF (q, σt) · (q̄ − q)

−
∫

Td×Td

N̄ t
s [µ](q, y) · (z − y)γ(dy, dz)

∣

∣

∣

≤ D̄A

(

(r − t)2 + |q̄ − q|2 +W 2
2 (µ, ν)

)

.(9.2)

Here,

σt = Σt
s[µ]#µ, σ̄r = Σr

s[ν]#ν.

Proof. (i) The continuity of N and (t, s, q, µ) → ∇qF
(

q,Σt
s[µ]#µ

)

follows from the

continuity of ∇φ, V and Σ. Since in addition ∇qΣ and ∇̄µΣ are continuous, we
conclude that N̄ is continuous.

(ii) We have

F
(

q̄, σ̄r

)

− F (q, σt) =

∫

Td×Td

(

φ
(

q̄ − Σr
s[ν](z)

)

− φ
(

q − Σt
s[µ](y)

))

γ(dy, dz).
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Since ‖∇2φ‖∞ ≤ κ, we obtain

∣

∣

∣

∣

∣

∫

Td×Td

[

φ
(

q̄ − Σr
s[ν](z)

)

− φ
(

q − Σt
s[µ](y)

)

−∇φ
(

q − Σt
s[µ](y)

)

·
(

(q̄ − q) −
(

Σr
s[ν](z) − Σt

s[µ](y)
))

]

γ(dy, dz)

∣

∣

∣

∣

∣

≤ κ

2

∫

Td×Td

∣

∣

∣
q̄ − q − Σr

s[ν](z) + Σt
s[µ](y)

∣

∣

∣

2
γ(dy, dz)

≤ C̃A

∫

Td×Td

(

(r − t)2 + |q̄ − q|2 + |z − y|2 +W 2
2 (µ, ν)

)

γ(dy, dz)

= C̃A

(

(r − t)2 + |q̄ − q|2 + 2W 2
2 (µ, ν)

)

,(9.3)

for some independent constant C̃A. We notice that

∫

Td×Td

∇φ
(

q − Σt
s[µ](y)

)

· (q̄ − q)γ(dy, dz) = ∇qF (q, σt) · (q̄ − q).

Using Theorem 8.12 (ii) we now have

∣

∣

∣

∣

∣

∫

Td×Td

∇φ
(

q − Σt
s[µ](y)

)

·
[

Σr
s[ν](z) − Σt

s[µ](y) − ∂tΣ
t
s[µ](y)(r − t)

−∇qΣ
t
s[µ](y)(z − y) −

∫

Td×Td

∇̄µΣt
s[µ](y,w)(u − w)γ(dw, du)

]

γ(dy, dz)

∣

∣

∣

∣

∣

≤ κCA

∫

Td×Td

(

(r − t)2 + |z − y|2 +W 2
2 (µ, ν)

)

γ(dy, dz)

= κCA

(

(r − t)2 + 2W 2
2 (µ, ν)

)

.(9.4)

It remains to combine (9.3) and (9.4) and notice that

−N t
s [µ](q) =

∫

Td

∇φ
(

q − Σt
s[µ](y)

)

· ∂tΣ
t
s[µ](y)µ(dy)

=

∫

Td×Td

∇φ
(

q − Σt
s[µ](y)

)

· ∂tΣ
t
s[µ](y)γ(dy, dz).
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and
∫

Td×Td

∇φ
(

q − Σt
s[µ](y)

)

·
[

∇qΣ
t
s[µ](y)(z − y)

+

∫

Td×Td

∇̄µΣt
s[µ](y,w)(u − w)γ(dw, du)

]

γ(dy, dz)

= −
∫

Td×Td

N̄ t
s [µ](q, y) · (z − y)γ(dy, dz).

To obtain the last equality we first changed the order of integration and then renamed
the variables.

Denote

M̄s[µ](q, y) = −(∇qΣ
0
s[µ](y))T∇U1

(

q − Σ0
s[µ](y)

)

−
∫

Td

(∇̄µΣ0
s[µ](u, y))T∇U1

(

q − Σ0
s[µ](u)

)

µ(du).

Repeating the same proof as this of Lemma 9.1 we also obtain the following result.

Lemma 9.2. The function (s, q, µ) → u∗
(

q,Σ0
s[µ]#µ

)

is continuously differentiable
in the following sense:

(i) The function (s, q, µ) → ∇qu∗
(

q,Σ0
s[µ]#µ

)

is continuous on [0, T ] × T
d ×

P(Td), and M̄ is continuous on [0, T ] × T
d × T

d × P(Td).
(ii) Suitably increasing the value of D̄A we have that for any

(s, q, q̄, µ, ν) ∈ [0, T ] × T
d × T

d × P(Td) × P(Td) and γ ∈ Γ0(µ, ν)
∣

∣

∣
u∗

(

q̄, σ̄0

)

− u∗(q, σ0) −∇qu∗(q, σ0) · (q̄ − q)

−
∫

Td×Td

M̄0
s[µ](q, y) · (z − y)γ(dy, dz)

∣

∣

∣

≤ D̄A

(

|q̄ − q|2 +W 2
2 (µ, ν)

)

,(9.5)

where σt, σ̄r are as in Lemma 9.1.

We now set

Υs[µ](q, y) =

∫ s

0

(

V̄t
s[µ](q, y) + N̄ t

s [µ](q, y)
)

dt + M̄0
s[µ](q, y).

The following corollary is a direct consequence of Corollary 8.16 and Lemmas 9.1
and 9.2.

Corollary 9.3. The following hold:
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(i) Υ is continuous on [0, T ] × T
d × T

d × P(Td).
(ii) Suitably increasing the value of D̄A we have that for any

(s, q, µ, ν) ∈ [0, T ] × T
d × P(Td) × P(Td) and γ ∈ Γ0(µ, ν)

∣

∣

∣
u(s, q, ν) − u(s, q, µ) −

∫

Td×Td

Υs[µ](q, y) · (z − y)γ(dy, dz)
∣

∣

∣
≤ D̄AW

2
2 (µ, ν).

Proof. (i) Since V̄, N̄ and M̄ are continuous, we obtain that Υ is continuous.
(ii) We combine Corollary 8.16 and Lemmas 9.1 and 9.2 to obtain (ii).

Remark 9.4.

(i) We combine Remark 2.6 and Corollary 9.3 to obtain that the gradient of
u(s, q, ·) at µ is the orthogonal projection of Υ(s, q, y, µ) onto the tangent
space TµP(Td). Since the combination of Lemma 6.6 (ii) and Lemma 7.1 (i)
gives that vs belongs to the tangent space and vs = ∇qu(s, ·, µ), we obtain
∫

Td

Υs[µ](q, y) · vs(y)µ(dy) =

∫

Td

∇µu(s, q, µ)(y) · ∇qu(s, ·, µ)µ(dy).

(ii) Since Υ is continuous on a compact set, it is bounded and so, ∇µu is bounded.
Using Corollary 9.3 we thus obtain that there exists a constant κ1 which is
independent of s ∈ [0, T ] and q ∈ T

d, such that u(s, q, ·) is κ1–Lipschitz.

9.2. Existence of a strong solution to the master equation.

Theorem 9.5. The function u defined in (9.1) is Lipschitz on [0, T ]× T
d ×P(Td),

differentiable with respect to each of its variables, and u(0, ·, ·) = u∗. Furthermore,
u satisfies the following:

(i) For any s ∈ [0, T ] and any µ ∈ P(Td), there exists σ̄ ∈ AC2(0, T ;P(Td))
such that σ̄s = µ and

∂tσ̄t + ∇ · (σ̄t∇qu(t, q, σ̄t)) = 0 in D′
(

(0, T ) × T
d
)

.

(ii) The gradient ∇qu and the derivative ∂tu are continuous on (0, T )×T
d×P(Td)

and, for every (s, q, µ) ∈ (0, T ) × T
d × P(Td),

∂tu(s, q, µ) +

∫

Td

∇µu(s, q, µ)(y) · ∇qu(s, y, µ)µ(dy) +
|∇qu(s, q, µ)|2

2
− F (q, µ) = 0.

Proof. We know from Lemma 7.1 and Corollary 9.3 that ∇qu and ∇µu exist on

(0, T )×T
d×P(Td), and Lemma 4.2 (ii) guarantees that ∇qu is continuous. Moreover,

Lemma 3.15 and Remark 9.4 allow us to conclude that the functions u(t, ·, ·) are
Lipschitz continuous with a Lipschitz constant which is independent of t ∈ [0, T ]. It
thus suffices to show that the derivative ∂tu exists for every (t, q, µ) ∈ (0, T ) ×T

d ×
P(Td) and that (ii) is satisfied to conclude that u is Lipschitz.
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We will use the following notation:

v̄t(q) = Vt
s[µ], σ̄t = Σt

s[µ]#µ,

and

σ̂t =
(

Id + (t− s)vs

)

#
σ̄s =

(

Σs
s[µ] + (t− s)∂tΣ

t=s
s [µ]

)

#
µ.

(i) By Lemma 7.1, ∇qu(t, q, σ̄t) = v̄t(q) and so, since the function U used in
Corollary 7.2 satisfies ∇qu(t, q, σ̄t) = ∇qU(t, q), we use (ii) of the same corollary to
conclude that (i) holds for σ̄t.

(ii) If s+ h ∈ [0, T ] then

gh :=
(

Σs+h
s [µ] ×

(

Id + hv̄s

)

)

#
µ ∈ Γ(σ̄s+h, σ̂s+h)

, and thus,

W 2
2 (σ̄s+h, σ̂s+h) ≤

∫

Td

∣

∣

∣
Σs+h

s [µ](q) − Σs
s[µ](q) − h∂tΣ

s
s[µ](q)

∣

∣

∣

2

Td
µ(dq)

≤ h4

4
||∂ttΣ||2∞.(9.6)

By Lemma 3.15 v̄ ∈ C1(Td)d and so, by Lemma 6.6 (ii), v̄ is the gradient of
a function which belongs to C2(Td). Thus, for |h| small enough, Id + hv̄s is the
gradient of a convex function. Consequently (see e.g. [4])

(9.7) γh :=
(

Id × (Id + hv̄s)
)

#
µ ∈ Γ0(µ, σ̂s+h),

and so

(9.8) W 2
2 (σ̂s+h, µ) =

∫

Td×Td

|a− b|2γh(da, db) = h2‖v̄s‖2
µ.

Furthermore, using (9.7) in Corollary 9.3, we have
∣

∣

∣

∣

u
(

s+ h, q, σ̂s+h

)

− u(s+ h, q, µ) − h

∫

Td

Υs+h[µ](q, y) · v̄s(y)µ(dy)

∣

∣

∣

∣

≤ D̄AW
2
2 (σ̂s+h, µ).

This, together with the fact that Υ is continuous on a compact set and thus admits
a modulus of continuity ω, yields

∣

∣

∣

∣

u
(

s+ h, q, σ̂s+h

)

− u(s+ h, q, µ) − h

∫

Td

Υs[µ](q, y) · v̄s(y)µ(dy)

∣

∣

∣

∣

≤ |h|ω(|h|)‖v̄s‖µ + D̄AW
2
2 (σ̂s+h, µ).(9.9)



EXISTENCE OF A SOLUTION TO AN EQUATION OF MEAN FIELD GAMES 59

By Remark 9.4, for any t ∈ [0, T ], u(t, q, ·) is κ1–Lipschitz and so, thanks to (9.6),

(9.10)
∣

∣

∣
u
(

s+ h, q, σ̂s+h

)

− u
(

s+ h, q, σ̄s+h

)

∣

∣

∣
≤ κ1h

2

2
‖∂ttΣ‖∞.

By Lemma 7.1

(9.11)

∣

∣

∣

∣

u
(

s+ h, q, σ̄s+h

)

− u(s, q, µ
)

+ h

(

1

2
|∇qu(s, q, µ)|2 + F (q, µ)

)∣

∣

∣

∣

= o(h).

Writing

u(s+ h, q, µ) − u(s, q, µ) = u(s+ h, q, µ) − u
(

s+ h, q, σ̂s+h

)

+ u
(

s+ h, q, σ̂s+h

)

− u
(

s+ h, q, σ̄s+h

)

+ u
(

s+ h, q, σ̄s+h

)

− u(s, q, µ),(9.12)

we obtain
∣

∣

∣
u(s+ h, q, µ) − u(s, q, µ) + h

∫

Td

Υs[µ](q, y) · vs(y)µ(dy)

+h
(1

2
|∇qu(s, q, µ)|2 + F (q, µ)

)
∣

∣

∣

≤
∣

∣

∣
u(s+ h, q, µ) − u

(

s+ h, q, σ̂s+h

)

+ h

∫

Td

Υs[µ](q, y) · v̄s(y)µ(dy)
∣

∣

∣

+
∣

∣u
(

s+ h, q, σ̂s+h

)

− u
(

s+ h, q, σ̄s+h

)∣

∣

+
∣

∣

∣
u
(

s+ h, q, σ̄s+h

)

− u(s, q, µ) + h
(1

2
|∇qu(s, q, µ)|2 + F (q, µ)

)∣

∣

∣
.(9.13)

We combine (9.8), (9.9), (9.10) and (9.13) to conclude that if we set

ū := −
∫

Td

Υs[µ](q, y) · v̄s(y)µ(dy) − 1

2
|∇qu(s, q, µ)|2 − F (q, µ)

then
|u(s+ h, q, µ) − u(s, q, µ) − hū| = o(h).

This proves that u(·, q, µ) is differentiable at s, ∂tu(s, q, µ) = ū, and ∂tu is continuous
on (0, T ) × T

d × P(Td). In other words,

∂tu(s, q, µ) +

∫

Td

Υs[µ](q, y) · v̄s(y)µ(dy) +
|∇qu(s, q, µ)|2

2
+ F (q, µ) = 0.

We now use Remark 9.4 (i) to complete the proof.

Definition 9.6. We say that a continuous function v : [0, T ] × T
d × P(Td) → R is

a strong solution to (1.1) if v(0, ·, ·) = u∗, v is differentiable with respect to each
of its variables on (0, T ) × T

d × P(Td), ∂tv,∇qv are bounded and continuous on
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(0, T ) × T
d × P(Td), there exists a bounded and continuous map Υ : (0, T ) × T

d ×
T

d × P(Td) → R
d satisfying for every (t, q, µ, ν) ∈ (0, T ) × T

d × P(Td) × P(Td)
(9.14)

sup
γ∈Γ0(µ,ν)

∣

∣

∣
v(t, q, ν) − v(t, q, µ) −

∫

Td×Td

Υs[µ](q, y) · (z − y)γ(dy, dz)
∣

∣

∣
= o (W2(µ, ν)) ,

and we have

∂tv(t, q, µ) +

∫

Td

∇µv(t, q, µ)(y) · ∇qv(t, y, µ)µ(dy) +
|∇qv(t, q, µ)|2

2
− F (q, µ) = 0

for every (t, q, µ) ∈ (0, T ) × T
d × P(Td).

A direct consequence of Theorem 9.5 is the following corollary.

Corollary 9.7. The function u defined in (9.1) is a strong solution to (1.1).

We finish this section with a chain rule for functions regular enough to be strong
solutions to (1.1). In the rest of this section T is any positive number.

Lemma 9.8. Let T > 0 and let v : (0, T ) × T
d × P(Td) → R have the regular-

ity properties required for a strong solution to (1.1). Let Q ∈ W 1,2
(

0, T ; Td
)

, σ ∈
AC2

(

0, T ;P(Td)
)

. Let s ∈ (0, T ) be such that Q̇s exists and there exists a velocity
of minimal norm vs for σ. (Recall that by Theorem 8.3.1 and Proposition 8.4.5 of
[4], vt exists for a.e. t and vt ∈ TσtP(Td).) Then the function t → v(t, St, σt) is
differentiable at t = s and

d

dt
v(t, St, σt)|t=s = ∂tv(s,Qs, σs) + ∇qv(s,Qs, σs) · Q̇s

+

∫

Td

∇µv(s,Qs, σs)(y) · vs(y)σs(dy).(9.15)

Proof. The proof is similar to the proof of Theorem 9.5. We define

σ̂t :=
(

Id + (t− s)vs

)

#
σs.

Then

γh :=
(

Id × (Id + hv̄s)
)

#
σs ∈ Γ0(σs, σ̂s+h),

and, by (9.8),

(9.16) W2(σ̂s+h, σs) = |h|‖v̄s‖σs .

Moreover, by Proposition 8.4.6 of [4],

(9.17) W2(σs+h, σ̂s+h) = o(h).
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We have

v(s + h,Qs+h, σs+h) − v(s,Qs, σs) = v(s + h,Qs+h, σs+h) − v(s,Qs+h, σs+h)

+ v(s,Qs+h, σs+h) − v(s,Qs, σs+h)

+ v(s,Qs, σs+h) − v(s,Qs, σs).(9.18)

By the mean value theorem there is τ ∈ [s, s + h] such that

v(s+ h,Qs+h, σs+h) − v(s,Qs+h, σs+h) = h∂tv(τ,Qs+h, σs+h).

Therefore, by the continuity of ∂tv,

(9.19)

∣

∣

∣

∣

v(s+ h,Qs+h, σs+h) − v(s,Qs+h, σs+h)

h
− ∂tv(s,Qs, σs)

∣

∣

∣

∣

=
o(h)

|h| .

Using the mean value theorem again, there is z in the line segment connecting Qs

and Qs+h such that

v(s,Qs+h, σs+h) − v(s,Qs, σs+h) = ∇qv(s, z, σs+h) · (Qs+h −Qs).

Therefore, by the continuity of ∇qv,

(9.20)

∣

∣

∣

∣

v(s,Qs+h, σs+h) − v(s,Qs, σs+h)

h
−∇qv(s,Qs, σs) · Q̇s

∣

∣

∣

∣

=
o(h)

|h| .

Now

v(s,Qs, σs+h) − v(s,Qs, σs) = v(s,Qs, σs+h) − v(s,Qs, σ̂s+h)

+ v(s,Qs, σ̂s+h) − v(s,Qs, σs).(9.21)

Since it is easy to see that v is Lipschitz, there is a constant L > 0, such that

(9.22)

∣

∣

∣

∣

v(s,Qs, σs+h) − v(s,Qs, σ̂s+h)

h

∣

∣

∣

∣

≤ LW2(σs+h, σ̂s+h)

|h| =
o(h)

|h| ,

where we used (9.17). Finally, if Υ is a function from (9.14) for v, we obtain

∣

∣

∣

v(s,Qs, σ̂s+h) − v(t, q, σs)

h
−

∫

Td

Υs[σs](Qs, y) · vs(y)σs(dy)
∣

∣

∣

=
∣

∣

∣

v(s,Qs, σ̂s+h) − v(t, q, σs)

h
− 1

h

∫

Td×Td

Υs[σs](Qs, y) · (z − y)γh(dy, dz)
∣

∣

∣

=
o
(

W 2
2 (σs, σ̂s+h)

)

|h| =
o(|h|‖v̄s‖σs)

|h| =
o(h)

|h| ,(9.23)
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where we used (9.16). Therefore, combining (9.18), (9.19), (9.20), (9.21), (9.22) and
(9.23), we obtain

d

dt
v(t, St, σt)|t=s = ∂tv(s,Qs, σs) + ∇qv(s,Qs, σs) · Q̇s

+

∫

Td

Υs[σs](Qs, y) · vs(y)σs(dy).

It remains to notice that vs ∈ TσsP(Td), and thus
∫

Td

Υs[σs](Qs, y) · vs(y)σs(dy) =

∫

Td

∇µv(s,Qs, σs)(y) · vs(y)σs(dy).

9.3. Connection with MFG equations and existence of a Nash equilibrium.
Our study does not establish whether strong solutions to (1.1) are unique and thus we
cannot exclude the possibility that there may be another strong solution to (1.1) not
given by the representation formula (9.1). For this reason, in this subsection, without
appealing to that representation formula, we explain how any strong solution to (1.1)
can be used to obtain a solution to the First Order Mean Field Games equations
(1.2) and obtain the existence of an analogue of a Nash equilibrium for a game with
a continuum of players.

We begin with a lemma that provides a rigorous connection between strong solu-
tions to the master equation equation (1.1) and the First Order Mean Field Games
equations (1.2).

Lemma 9.9. Let T > 0, let u be a strong solution to (1.1) (see Definition 9.6), and
let µ ∈ P(Td). Then:

(i) There exist σ̄ ∈ AC2
(

0, T ;P(Td)
)

such that

(9.24)

{

∂tσ̄t + ∇ ·
(

∇qu(t, q, σ̄t)σ̄t

)

= 0 in D′
(

(0, T ) × T
d
)

,
σ̄T = µ.

The solution σ̄ is given by σ̄t = S(t, ·)#µ for t ∈ [0, T ] and if µ is non–
atomic, so is σ̄t for t ∈ [0, T ]. In particular if µ has a density with respect to
the Lebesgue measure, so does σ̄t for t ∈ [0, T ]. Here, S is the flow uniquely
determined by the system of differential equations

(9.25)

{

∂tS(t, q) = ∇qu(t, S(t, q), σ̄t), q ∈ T
d, t ∈ (0, T )

S(s, q) = q q ∈ T
d.

(ii) If U(t, q) := u(t, q, σ̄t), then U ∈ C([0, T ] × T
d) ∩ C1

(

(0, T ) × T
d
)

and the
pair (σ̄, U) satisfies the system of equations (1.2), in fact U is a classical
solution to the HJ equation in this system.
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Proof. We sketch the proof. Since ∇qu is continuous and bounded, for any σ ∈
AC2(0, T,P(Td)) there exists σ∗ ∈ AC2

(

0, T ;P(Td)
)

such that

(9.26)

{

∂tσ
∗
t + ∇ ·

(

∇qu(t, q, σt)σ
∗
t

)

= 0 in D′
(

(0, T ) × T
d
)

,
σ∗s = µ.

In other words, we have defined a map which to each σ, associates σ∗. Using it-
erations one checks that this map has a fixed point σ̄; in other words, σ̄ satisfies
(9.24).

It is obvious that U(t, q) := u(t, q, σ̄t) satisfies U ∈ C([0, T ] × T
d). By Lemma

9.8 and the fact that u is a strong solution to (1.1) we have, for a.e. t ∈ (0, T ) and
every q ∈ T

d,

∂tU(t, q) =
d

dt
u(t, q, σ̄t)

= ∂tu(t, q, σ̄t) +

∫

Td

∇µu(t, q, σ̄t)(y) · vt(y)σ̄t(dy)

= −|∇qu(t, q, σ̄t)|2
2

− F (q, σ̄t),(9.27)

since vt = ∇qu(t, q, σ̄t) for a.e. t. Noticing that the right hand side of (9.27) is
continuous, we conclude that ∂tU(t, q) must exist for every t ∈ (0, T ) and every
q ∈ T

d and be equal to the right hand side of (9.27). Thus U ∈ C1((0, T )×T
d) and

the pair (σ̄, U) solves (1.2). In particular U is a classical solution to the HJ equation

(9.28) ∂tU(t, q) +
|∇qU(t, q)|2

2
+ F (q, σ̄t) = 0, U(0, q) = u∗(0, q, σ̄0).

Moreover it is a standard that, under our assumptions on u∗ and F , we have ∇qqU ≤
CId for some C > 0. Using these facts it then follows from the theory of HJ equations
and ODE theory that (9.25) has a unique solution on (0, T ) and the flow satisfies
|S(t, q1) − S(t, q2)|Td ≥ C1|q1 − q2|Td for t ∈ [0, T ], q1, q2 ∈ T

d, for some C1 > 0, and
thus if µ is non–atomic, so is σ̂t := S(t, ·)#µ for t ∈ [0, T ]. In particular if µ has a
density, so does σ̂t := S(t, ·)#µ for t ∈ [0, T ]. Moreover, by results on the continuity
equation, σ̂ is the unique solution to

(9.29)

{

∂tσ̂t + ∇ ·
(

∇qu(t, q, σ̄t)σ̂t

)

= 0 in D′
(

(0, T ) × T
d
)

,
σ̂T = µ.

For the proofs of these statements we refer the reader to [12], Section 4.1, Lemmas
4.11 and 4.13, and Section 4.2, Theorem 4.18 (see also [1]). The uniqueness of
solutions of (9.29) thus implies σ̄t = σ̂t = S(t, ·)#µ, which completes the proof.

We assume in the rest of this subsection that T > 0 and u is a strong solution to
(1.1).
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We are now ready to explain what we mean by a Nash equilibrium.
Let s ∈ [0, T ] and µ ∈ P(Td) be a non–atomic measure; for instance, we may

assume that µ has a density. Given paths

Q ∈W 1,2
(

0, s; Td
)

, σ ∈ AC2
(

0, s;P(Td)
)

,

we define the action

Js(Q,σ) =

∫ s

0

(1

2
|Q̇τ |2 − F (Qτ , στ )

)

dτ

and the augmented action

J o
s (Q,σ) =

∫ s

0

( |Q̇t|2
2

− F
(

Qt, σt

)

)

dt+ u∗(Q0, σ0).

Suppose we have infinitely many players represented by points on T
d, the position of

an average player at time s is at q ∈ T
d, and µ is the given probability distribution

of the players at time s. The players try to choose paths to minimize their utility
functions given by the augmented actions. It is assumed that each player knows
the overall distribution of all the players at each time t, which is represented by the
measure σ[S]t, and which is determined by the overall flow of all players. However
neither player can change the distribution of the players by his/her own actions alone
as it can be changed only by a collective action of the players. This is why the phrase
continuum of players is used and games with this kind of structure are also called
non-atomic. We are thus looking for a map S(t, q) such that, S(·, q) ∈W 1,2(0, s; Td)
for every q ∈ T

d, and

J o
s

(

S(·, q), σ[S]
)

≤ J o
s

(

Q,σ[S]
)

for every q ∈ T
d, Q ∈W 1,2

(

0, s; Td
)

such that Q(s) = q, where

σ[S]t = S(t, ·)#µ.
The measure σ[S]t gives the distribution of the players at time t determined by the
flow S, and the path S(·, q) is then optimal for the player which is located at q at
time s for every q ∈ T

d. This is what we mean by a Nash equilibrium.
Let S, σ̄ be as in Lemma 9.9 (applied with T = s) so that (9.24) and (9.25) are

satisfied and σ̄t has a density with respect to the Lebesgue measure for all t ∈ [0, s].
We recall that if u is the strong solution constructed in Section 9.2 then the pair

S(t, q) = Σt
s[µ](q), σ̄t = S(t, ·)#µ

solves (9.24)-(9.25).
We refer to ∇qu(t, q, σ̄t) as a closed loop feedback control strategy. We claim

that map S constructed this way gives a Nash equilibrium for the game in the sense
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described above, and u(t, q, µ) is the payoff function for the player which is at y at
time s, i.e., for every y,

u(s, q, µ) = J o
s (S(·, q), σ̄) ≤ J o

s (Q, σ̄)

for every path Q : [0, s] → T
d is such that Qs = q. We refer the reader to [12] and

[22] for more on the concept of a Nash equilibrium for games with large numbers of
players.

Lemma 9.10. Let Q ∈W 1,2
(

0, s; Td
)

and be differentiable at t ∈ (0, s). Then

d

dt

(

u(t,Qt, σ̄t) − Jt(Q, σ̄)

)

< 0

unless Q̇t = ∇qu(t,Qt, σ̄t), in which case equality holds.

Proof. We remind that v̄t = ∇qu(t, ·, σ̄t) is the velocity of minimal norm for σ̄ for
every t. We thus have, by (9.28),

d

dt

(

u(t,Qt, σ̄t) − Jt(Q, σ̄)

)

=
d

dt

(

U(t,Qt) −Jt(Q, σ̄)

)

= ∂tU(t,Qt) + Q̇t · ∇qU(t,Qt) −
|Q̇t|2

2
+ F (Qt, σ̄t)

= ∂tU(t,Qt) +
1

2
|∇qU(t,Qt)|2 + F (Qt, σ̄t) −

1

2
|Q̇t −∇qU(t,Qt)|2

= −1

2
|Q̇t −∇qu(t,Qt, σ̄t)|2.

This completes the proof.

Corollary 9.11 (Existence of a Nash equilibrium). Assume Q ∈ W 1,2
(

0, s; Td
)

is
such that Qs = q. Then

(9.30) u(s, q, µ) = J o
s (S(·, q), σ̄) < J o

s (Q, σ̄),

unless Q ≡ S(·, q).
Proof. By Lemma 9.10, unless Q̇t ≡ ∇qu(t,Qt, σ̄t) for a.e. t ∈ [0, s], we have

u(s,Qs, µ) − Js(Q, σ̄) − u(0, Q0, σ̄0) < 0

and
u(s, S(s, q), µ) −Js(S(·, q), σ̄) − u(0, S(0, q), σ̄0) = 0.

We now use that
u(s,Qs, µ) = u(s, q, µ) = u(s, S(s, q), µ)

and
u(0, Q0, σ̄0) = u∗(Q0, σ̄0), u(0, S(0, q), σ̄0) = u∗(S(0, q), σ̄0),
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to obtain (9.30). Since S(·, q) is the unique solution to (9.25), Q̇t ≡ ∇qu(t,Qt, σ̄t)
for a.e. t ∈ [0, s], implies S(·, q) ≡ Q on [0, s].
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[4] L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of
Probability Measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005.
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[44] J. M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Le cas stationnaire, C. R. Math. Acad.

Sci. Paris 343 (2006), no. 9, 619–625.
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