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1. INTRODUCTION

The paper is devoted to the study of Hamilton�Jacobi�Bellman (HJB)
equations associated with stochastic optimal control problems for the Duncan�
Mortensen�Zakai (DMZ) equation. Such HJB equations have the form

{
vt+ inf

: # A { 1
2 :

m

k=1

(D2vS k
: x, S k

: x) &(A:x, Dv) + f (x, :)==0

in (0, T )_X
v(T, x)= g(x) in X,

(1)
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where X is a real, separable Hilbert space equipped with the inner product
( } , } ), and S k

: , A: are realizations of respectively first and second order
differential operators in X. Cauchy problem (1) has been investigated by
P. L. Lions [24, Part II] in the case where X is L2(Rd) and S k

: are just
multiplication operators. He proved that the value function of the
associated optimal control problem is the unique appropriately defined
weak solution of (1). The uniqueness was established by sub- and super-
optimality arguments and stochastic analysis. Bellman equations related to
control of measure-valued diffusions have also been studied by O. Hijab in
[15�17]. However the notion of solution used there was so weak that the
author did not obtain any uniqueness results. This paper presents a unified
approach to (1) that guarantees existence of unique solutions in a
generality that includes equations coming from a large class of reasonable
``separated'' problems.

The main interest in studying (1) comes from stochastic optimal control
of partially observed systems. The DMZ equation is the equation of the
unnormalized conditional distribution and is the state equation of a so
called ``separated'' problem (see e.g. [2, 11, 27]). This connection will be
discussed in Section 7. Motivated by such problems we want to study the
HJB equation (1) in a generality that would include cases coming from
problems with correlated noise and having fairly general cost functions (see
Section 7 for details). These requirements force the S k

: to be first order
differential operators and may cause functions f ( } , :) and g not to be well
defined in L2(Rd). To handle such difficulties we will investigate (1) in
weighted L2-spaces for which the usual L2(Rd) is a special case. We will
assume that the operators S k

: and A: satisfy a nondegeneracy condition (7),
however it seems possible to extend the techniques of the paper to treat the
control of degenerate equations of DMZ type that come from partially
observed problems.

We define an appropriate notion of weak solution of (1) (called viscosity
solution) that has its origin in the definitions that appeared independently
in [5] and [8, Part VII], that were later adapted to second order equa-
tions in [14], and some ideas from [24, Part II, 30, 31]. The notion of
viscosity solution is based on a principle of replacing the possibly nonexist-
ing derivatives of a sub-(super-) solution v by derivatives of test functions
. at points (t̂, x̂) such that v&. have maximum (minimum). In our defini-
tion of solution we choose an appropriate class of test functions .
and require that the points x̂ be in a weighted Sobolev space that will be
called X1 so that all terms in (1) have classical meaning. This helps deal
with the technicalities of the proof of uniqueness of solutions however it
makes the existence part a little more difficult since first we have to show
that we can achieve x̂ to be in the desired space when v is the value
function.
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The major results of the paper are contained in Sections 5 and 6 in which
we show that the value function of the associated optimal control problem
belongs to an appropriate class of functions and it is the unique viscosity
solution of (1) in this class. The proof of comparison that gives uniqueness
is fairly general and does not use any references to the control problem. It
could be used to treat more general equations, for instance those of Isaacs
type. In Section 7 we discuss the connection with partial observation
problems and the applicability of our results. Preliminary operator
estimates and various estimates for the DMZ equation in weighted spaces
are proved in Section 3, while in Section 4 we introduce the optimal control
problem, the associated HJB equation, and the definition of viscosity
solution.

We refer the reader to [3, 4, 12�14, 19, 24, 30, 31] for related results and
a history of second order Hamilton�Jacobi�Bellman-Isaacs equations in
Hilbert spaces and to [2, 10, 11, 27] and the references quoted therein for
more information on the DMZ equation and stochastic optimal control of
partially observed systems.

2. PRELIMINARIES

2.1. Notation
We will denote the norm and the inner product in Rk by | } | Rk and

( } , } )Rk respectively. Moreover for a bounded function g: Rk [ Rd (d,
k # N) we set &g&�=�d

i=1 sup! # Rk | g i (!)|R .
Let X, Y be Hilbert spaces equipped with the norms & }&X and & }&Y

respectively. We denote by L(X, Y ) the Banach space of continuous linear
operators T : X � Y with the operator norm & }&L(X, Y ) . If X=Y we will
denote this space by L(X). We put

7(X )=[T # L(X ), T self-adjoint].

We denote by C(X, Y ) (respectively UC(X, Y )) the space of all functions
.: X � Y which are continuous (respectively, uniformly continuous) and
by BUC(X, Y ) the Banach space of all functions .: X � Y which are
bounded and uniformly continuous on X equipped with the usual norm

&.&�=sup
x # X

&.(x)&Y .

By USC(X ), LSC(X ) we denote respectively the space of upper-semicon-
tinuous functions and the space of lower-semicontinuous functions
.: X � R. For k # N, we denote by Ck(X ) the space of all functions which
are continuous on X together with all their Fre� chet derivatives up to order
k. For given 0�t<T we will also denote by C 1, 2((t, T )_X ) the space of

3STOCHASTIC OPTIMAL CONTROL
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all functions .: (t, T )_X � R for which .t and D., D2. (the Fre� chet
derivatives of . with respect to x # X ) exist and are uniformly continuous
on closed and bounded subsets of (t, T )_X.

We say that a function _: [0, +�) � [0, +�) is a modulus if _ is
continuous, nondecreasing, subadditive and _(0)=0. Subadditivity in
particular implies that, for all =>0 there exists C=>0 such that

_(r)�=+C=r for every r�0.

Moreover a function _: [0, +�)_[0, +�) � [0, +�) is a local
modulus if _ is continuous, nondecreasing in both variables, subadditive in
the first variable, and _(0, r)=0 for every r�0.

For any . # UC(X, Y ) we denote by _. a continuity modulus of . i.e. a
modulus such that &.(x1)&.(x2)&Y�_.(&x1&x2&X) for every x1 , x2 # X.
We recall that, if . # UC(X, Y ), then its modulus of continuity always
exists and so there exist positive constants C0 , C1 such that

&.(x)&Y�C0+C1 &x&X , for every x # X.

Let (0, F, [Ft : t�0], P) be a complete probability space with a normal
filtration [Ft : t�0] and let W be an m-dimensional Wiener process
adapted to the above filtration. We will call the 5-tuple (0, F, [Ft : t�0],
P, W) a stochastic base.

We will denote by L2(0; X ) the set of all measurable and square
integrable random variables Z: 0 [ X.

Given 0�t�T we denote by M 0([t, T]; X ) the set of all X-valued
processes measurable on [t, T] and progressively measurable with respect to
the filtration [Fs : t�s�T] and by M2([t, T]; X) (a subset of L2([t, T]_0; X))
the space of X-valued processes x such that x # M0([t, T]; X ) and

E \|
T

t
&x(s)&2

X ds+<+�.

2.2. Sobolev Spaces

Given d, k # N we denote by Hk(Rd) the Sobolev space of all measurable
functions Rd [ R with square integrable distributional derivatives up to
order k. In particular we set H0(Rd)=L2(Rd). We will write Hk instead of
Hk(Rd). For every k # N the space H k is a Hilbert space with the inner
product

(h1 , h2) k= :
|:|�k

|
Rd

�:h1(!) �:h2(!) d!.

4 GOZZI AND S� WIE� CH
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We will write & }&k for the norm in Hk. The topological dual space of H k

will be denoted by [Hk]$. As usual one can identify L2 with its dual by the
Riesz identification. This induces an embedding I: L2/�[H k]$ defined by

(I(a), b) ([H k]$, Hk)=(a, b) 0 , a # H0, b # H k, (2)

where ( } , } ) ([H k]$, H k) is the duality pairing between [H k]$ and Hk.
Following standard notation we will denote H &k=[H k]$. Except when
explicitly stated we will always identify L2 with its dual. For a # H0 and
b # H k we can therefore rewrite (2), as

(a, b) (H &k, H k)=(a, b) 0 .

Let B=(&2+I )&1. It is well known that H&k is the completion of H0

under the norm

&x&&k=&Bk�2x&0=(Bkx, x) 0

and B1�2 is an isometry between H&2, H&1, H 0, H1 and H &1, H 0, H 1,
H2 respectively. Observe also that, for k # Z, the adjoint of the operator
B1�2: Hk [ Hk+1 is B1�2: H &k&1 [ H &k.

2.3. Weighted Sobolev Spaces

Let k=0, 1, 2. Given a positive real-valued function \ # C2(Rd), (\(!)>0
for every ! # Rd) we define the weighted Sobolev space H k

\(Rd) (or simply H k
\)

as the completion of C �
c (Rd) with respect to the weighted norm

x [ :
|:|�k \|Rd

(�:[\(!) x(!)])2 d!+
1�2

.

It is well known that H k
\ (k # N) can also be defined as the space of all

measurable functions x: Rd [ R such that \( } ) } x( } ) # H k and that
&x&H k

\
=&\x&H k . We will write & }&k, \ for the norm in H k

\ . We will denote
by C\ the isometry : H k

\ [ H k defined as (C\x)(!)=\(!) x(!), and by
C1�\=C &1

\ : H k [ H k
\ its inverse ((C1�\x)(!)=[\(!)]&1 x(!)). We observe

that H k
\ is a Hilbert space with the inner product (h1 , h2) k, \=

(C\h1 , C\h2) k . Similarly to the non-weighted case we will denote by
[H k

\]$ the topological dual space of H k
\ and, identifying L2

\=H 0
\ with its

dual, we have [H k
\]=H &k

\ and

H k
\ /H 0

\=[H 0
\]$/[H k

\]$=H &k
\ . (3)

We will always use this identification, except when explicitly stated.

5STOCHASTIC OPTIMAL CONTROL
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The adjoint C*\ of C\ is an isometry C*\ : [H k]$ [ [H k
\]$, i.e. C*\ :

H &k [ H &k
\ with the above identification so that for f # H &k we have

& f &H &k=&C*\ f &H\
&k . Observe that C*\ can be identified with C1�\ .

To simplify notation we will write Xk=H k
\(Rd).

Let B\=C1�\[(&2+I )&1] C\ . Similarly to the case of non-weighted
spaces we have that X&k is the completion of X0 under the norm &x&&k, \

=(Bk
\x, x) 0, \=(BkC\x, C\x) 0 and B1�2

\ is an isometry between X&2 ,
X&1 , X0 , X1 and X&1 , X0 , X1 , X2 respectively. The duality pairing between
X&k and Xk will be denoted by ( } , } ) (X&k , Xk)=(C\ } , C\ } ) (H &k, H k) . As
before we have by (3) that

(a, b) (X &k, X k)=(a, b) 0, \ .

In what follows we will consider weight functions \ of the form:

\;(!)=(1+|!| 2
Rd );�2. (4)

The proposition below follows by easy calculations.

Proposition 2.1. Let ;>0 be fixed. Then, for k=0, 1, 2, we have

(i) The function \; is two times continuously differentiable in Rd and
there exists a constant K; such that

"�\
\ "�

, "�2\
\ "�

�K; ;

(ii) Xk /H k;

(iii) if ;>d�2 then X0 /L1(Rd) and Xk /W k, 1(Rd).

3. THE DUNCAN�MORTENSEN�ZAKAI EQUATION

In this section we present various preliminary operator estimates and
prove estimates for solutions of the abstract DMZ equation in weighted
spaces. These estimates will be needed in our future analysis. The connec-
tion between the DMZ equation investigated here and partially observed
systems will be discussed in Section 7.

3.1. Operators and Estimates

Let A be a complete, separable metric space. For a given : # A we
consider the linear differential operator A: : D(A:)/X0 [ X0 defined as

6 GOZZI AND S� WIE� CH
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D(A:)=H 2
\(Rd)=X2 ,

(A:x)(!)=& :
d

i, j=1

� i[ai, j (!, :) �jx(!)] (5)

+ :
d

i=1

� i[bi (!, :) x(!)]+c(!, :) x(!),

and, for given m # N and k=1, ..., m, the operators S k
: : D(S k

:)/X0 [ X0

defined by

D(S k
:)=H 1

\(Rd)=X1 , (6)

(S k
: x)(!)= :

d

i=1

dik(!, :) � i x(!)+ek(!, :) x(!); k=1, ..., m.

We assume:

Hypothesis 3.1. (i) The coefficients

(aij) i, j=1, ..., d , (b i) i=1, ..., d , c, (d ik) i=1, ..., d; k=1, ..., m , (ek)k=1, ..., m : Rd_A [ R

are continuous in (!, :) and, as functions of !, have bounded norms in
C2(Rd), uniformly in : # A. Moreover, there exists a constant *>0 such that

:
d

i, j=1
\ai, j (!, :)& 1

2 :
m

k=1

dik(!, :) djk(!, :)+ zi z j�* |z| 2
R d (7)

for all : # A and !, z # Rd.

(ii) The weight \ is of the form (4).

The lemma below collects some preliminary facts about the operators A:

and S k
: . It will be left without a proof as the facts are either known or are

consequences of straightforward calculations. For two operators T1 , T2 we
write [T1 , T2]=T1T2&T2T1 .

Lemma 3.2. (i) The operators A: : X1 [ X&1 are variational operators
on the Gelfand triple (X1

/�X0
/�X&1), (and also on (X0

/�X&1
/�

X&2), (X2
/�X1

/�X0)) and

&A: &L(X1, X&1) =&A:&L(X0 , X&2)=&A: &L(X2, X0)

�&a&�+&b&�+&c&� (8)

(ii) The operators B\A: , B1�2
\ Sk

: : X0�X0 are bounded and &B\A:&L(X0) ,
&B1�2

\ S k
: &L(X0)�C for some constant C independent of : # A and 1�k�m.

7STOCHASTIC OPTIMAL CONTROL
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(iii) The following commutator equalities hold:

[A: , C\] x= f1 \x+ :
d

h=1

f2, h�h[\x], [S k
: , C\] x= f3, k \x,

where

f1( } )=& :
d

i, j=1

ai, j ( } , :) \
�2

i, j\

\
&2

�i \ �j \

\2 +
& :

d

i, j=1

(�i ai, j ( } , :))
�j \
\

+ :
d

i=1

b i ( } , :)
�i \
\

,

f2, h( } )=& :
d

i=1

a i, h( } , :)
�i \
\

& :
d

j=1

ah, j ( } , :)
� j \

\
; h=1, 2, ..., d,

f3, k( } )= :
d

i=1

dik( } , :)
�i \

\
; k=1, 2, ..., m.

(iv) The following estimates hold:

&[A: , C\] x&0 �&x&1, \ &a&� "�\
\ "�

+&x&0, \ _&a&� \"�2\
\ "�

+2 "�\
\ "

2

�+
+(&�a&�+&b&�) "�\

\ "�& , (9)

&[S k
: , C\] x&0�&x&0, \ &d&� "�\

\ "�
. (10)

We now prove three key coercivity estimates. Their proofs are rather
standard in the non-weighted case (see e.g. [23] and the proofs below).
The proofs in the weighted case are more technical and use the
commutator estimates of Lemma 3.2.

Lemma 3.3. Assume that Hypothesis 3.1 holds. Then there exists a
constant K>0 such that for every x # X1

(A:x, x) (X&1 , X1)&
1
2

:
m

k=1

(S k
: x, S k

: x) 0, \�
*
4

&x&2
1, \&K &x&2

0, \ , (11)

8 GOZZI AND S� WIE� CH
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while, for x # X2 ,

(A:x, B&1
\ x) 0, \&

1
2

:
m

k=1

(B&1
\ S k

: x, S k
: x) (X&1, X1) �

*
4

&x&2
2, \&K &x&2

1, \ ,

(12)

and for x # X0

(A:x, B\x) (X&2, X2)&
1
2

:
m

k=1

(B\S k
: x, S k

: x) (x1 , x&1)

�
*
4

&x&2
0, \&K &x&2

&1, \ . (13)

Proof. We first sketch the proof in the case \=1. Then we will only
give the complete proof of (11) and (13) since the proof of (12) is very
similar.

Part I. Proof in the case \=1.

Step 1. Proof of (11).

Given x # H 1 the estimate

(A:x, x) (H &1, H1)&
1
2

:
m

k=1

(S k
: x, S k

: x)0�
*
2

&x&2
1&K &x&2

0 (14)

can be rewritten as

�_A:&
1
2

:
m

k=1

[S k
:]* S k

:& x, x�(H &1, H 1)
�

*
2

&x&2
1&K &x&2

0 , (15)

which is a straightforward consequence of (7) and elementary calculations.

Step 2. Proof of (12).

We recall that (see for instance [23, Theorem 1.1]) for every two
strongly elliptic operators A1 , A2 there exist positive constants : and ;
such that

(A1x, A2 x) 0�: &x&2
2&; &x&2

1 , \x # H 2. (16)

We now observe that (recalling that [A, B]*=[B*, A*]) we have for
x # H 2

9STOCHASTIC OPTIMAL CONTROL
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(B&1S k
: x, S k

: x) (H &1, H1)

=( (S k
:)* B&1S k

: x, x) (H &2, H 2)

=(B&1(S k
:)* S k

: x, x) (H &2, H 2)+([(S k
:)*, B&1] S k

:x, x) (H &2, H2)

=( (S k
:)* S k

: x, B&1x)0+(S k
: x, [B&1, S k

:] x) (H 1, H &1)

and that

[B&1, S k
:] x=(I&2) S k

: x&S k
:(I&2) x=2S k

: x&S k
: 2x

= :
d

i=1

�ii _ :
d

j=1

djk � jx+ekx&
& :

d

j=1

djk �j _ :
d

i=1

�iix&&ek _ :
d

i=1

� iix&
= :

d

i=1

:
d

j=1

(� iidjk) �j x+2(�i djk)(�i �jx)

+ :
d

i=1

(�iiek) x+2(�i ek)(�i x)

so that, thanks to Hypothesis 3.1 (which says that the coefficients djk and
ek are uniformly bounded in C2),

&[B&1, S k
:] x&0�C &x&2 .

This gives, using (16) with

A1=A:& 1
2 :

m

k=1

[S k
:]* S k

: and A2=B&1,

that

(A: x, B&1x) 0& 1
2 :

m

k=1

(B&1S k
: x, S k

: x) (H &1, H 1)

=(A1x, A2 x)& 1
2 :

m

k=1

(S k
:x, [B&1, S k

:] x) (H 1, H &1)

�: &x&2
2&; &x&2

1&C &x&1 &x&2

and the claim follows upon estimating the last term by sums of squares
with appropriate weights.

10 GOZZI AND S� WIE� CH
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Step 3. Proof of (13).
Setting for x # H 0, y=Bx, we have

(A:x, Bx) (H &2, H 2)& 1
2 :

m

k=1

(BS k
:x, S k

: x) (H 1, H &1)

=(A: B&1y, y) (H &2, H2)& 1
2 :

m

k=1

(BS k
: B&1y, S k

: B&1y) (H 1, H &1)

=(A:* y, B&1y) 0& 1
2 :

m

k=1

( (S k
:+B[S k

: , B&1]) y, S k
: B&1y) (H 1, H &1)

=�_A:*& 1
2 :

m

k=1

(S k
:)* S k

: & y, B&1y�0

& 1
2 :

m

k=1

[&B1�2[S k
: , B&1] y&0+([S k

: , B&1] y, S k
: y) (H &1, H 1)].

Calculations similar to those in Step 2 yield &B1�2[S k
: , B&1] y&0�C &y&1 .

Now, applying (16), the fact that &B1�2z&0=&z&&1 for z # H &1, and finally
recalling that y=Bx we obtain

(A:x, Bx) (H &2, H2)& 1
2 :

m

k=1

(BS k
: x, S k

: x) (H 1, H &1)

�: &y&2
2&; &y&2

1&C &y&2 &y&1&C &y&2
1

=: &x&2
0&; &x&2

&1&C &x&0 &x&&1&C &x&2
&1

and we conclude as before.

Part II. Proofs in the general case.

Step 1. Proof of (11). For x # X1 we have

(A:x, x) (X&1 , X1) &1
2 :

m

k=1

(S k
: x, S k

: x) 0, \

=(C\ A: x, C\x) (H &1, H 1)& 1
2 :

m

k=1

(C\S k
: x, C\S k

: x) 0

=(A: C\x, C\x) (H &1, H 1)& 1
2 :

m

k=1

(S k
: C\x, S k

: C\x) 0

&([A: , C\] x, C\x) (H &1, H 1)

+ 1
2 :

m

k=1

([S k
: , C\] x, 2S k

: C\x&[S k
: , C\] x) 0

11STOCHASTIC OPTIMAL CONTROL
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which, using commutator estimates (9), (10) and (11) for \=1, gives

(A:x, x) (X&1, X1)&
1
2

:
m

k=1

(S k
: x, S k

: x) 0, \

�
*
2

&x&2
1, \&K &x&2

0, \

&&x&2
0, \ _&a&� \"�2\

\ "�
+2 "�\

\ "
2

�+
+(&�a&�+&b&�) "�\

\ "� &&&x&0, \ &x&1, \ &a&� "�\
\ "�

&
1
2

&x&0, \ &d&� "�\
\ "�

__(2 &d&� &x&1, \+2 &e&� &x&0, \)+&x&0, \ &d&� "�\
\ "�&

�
*
2

&x&2
1, \&K &x&2

0, \&C1 &x&2
0, \&C2 &x&0, \ &x&1, \

where in the last inequality we used Hypothesis 3.1(ii) and Proposition 2.1(i).
It is now enough to find M>0 such that

C2 &x&0, \ &x&1, \�
*
4

&x&2
1, \+M &x&2

0, \ .

Step 2: Proof of (13).

We have

(A:x, B\x) (X&2, X2)& 1
2 :

m

k=1

(B\S k
: x, S k

: x) (X1 , X&1)

=(C\A:x, C\ B\x) (H &2, H 2)& 1
2 :

m

k=1

(C\B\S k
: x, C\S k

: x) (H 1, H &1)

=(C\A:x, BC\x) (H &2, H 2)& 1
2 :

m

k=1

(BC\ S k
: x, C\S k

: x) (H 1, H &1)

=(A:C\x, BC\x) (H &2, H 2)& 1
2 :

m

k=1

(BS k
: C\x, S k

: C\ x) (H 1, H &1)

&([A: , C\] x, BC\x) (H &2, H 2)

+ 1
2 :

m

k=1

(B[S k
: , C\] x, 2S k

: C\x&[S k
: , C\] x) (H1, H &1) . (17)

12 GOZZI AND S� WIE� CH
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We now observe that

([A: , C\] x, BC\x) (H &2, H 2) =( f1( } ) C\x, BC\x) (H &2, H2)

+� :
d

h=1

f2, h( } ) �h[C\x], BC\x�(H &2, H 2)

=( f1( } ) C\x, BC\x) (H &2, H2)

+� :
d

h=1

�h[ f2, h( } ) C\x], BC\x�(H &2, H 2)

&� :
d

h=1

[�h f2, h( } )] C\x, BC\x�(H &2, H 2)

so that, noticing that

}� :
d

h=1

�h[ f2, h( } ) C\x], BC\x�(H &2, H 2) }
�"B1�2 \ :

d

h=1

�h[ f2, h( } ) C\x]+"0

&B1�2C\x&0

� :
d

h=1

& f2, h( } ) C\x&0 &C\x&&1 ,

we obtain

|&([A: , C\] x, BC\x) (H &2, H2) |

�[& f1&�+&�f2&�] &x&0, \ &x&&2, \+& f2&� &x&0, \ &x&&1, \

which, by Lemma 3.2, implies that there exists C>0 such that

|&([A: , C\] x, BC\x) (H &2, H 2) |�
*
8

&x&2
0, \+C &x&2

&1, \ , \x # X0 .

(18)

On the other hand

:
m

k=1

(B[S k
: , C\] x, 2S k

: C\ x&[S k
: , C\] x) (H 1, H &1)

=2 :
m

k=1

(B[ f3, k( } ) C\ x], S k
: C\x) (H1, H &1)

& :
m

k=1

(B[ f3, k( } ) C\ x], f3, k( } ) C\x) (H1, H &1)

13STOCHASTIC OPTIMAL CONTROL
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so that

} :
m

k=1

(B[S k
: , C\] x, 2S k

: C\x&[S k
: , C\] x) (H1, H &1) }

� :
m

k=1

[&B1�2[ f3, k( } ) C\x]&0 &B1�2S k
: C\x&0+&B1�2[ f3, k( } ) C\x]&2

0]

� :
m

k=1

[& f3, k( } )&� &x&&1, \ &B1�2S k
:&L(X0) &x&0, \

+& f3, k( } )&2
� &x&2

&1, \]

which, again by Lemma 3.2, yields

} :
m

k=1

(B[S k
: , C\] x, 2S k

:C\x&[S k
: , C\] x) (H 1, H &1) }

�
*
8

&x&2
0, \+C &x&2

&1, \ , \x # X0 . (19)

Therefore, using (13) for \=1 and putting (18) and (19) into (17), we
obtain

(A:x, B\x) (X&2, X2)&
1
2

:
m

k=1

(B\S k
: x, S k

: x) (X1 , X&1)

�
1
2

&x&2
0, \&K &x&2

&1, \&
*
4

&x&2
0, \&2C &x&2

&1, \

which gives the claim. K

3.2. Estimates for the Duncan�Mortensen�Zakai Equation

Let (0, F, [Ft : t�0], P, W) be a stochastic base as introduced in
Section 2.1. We fix a finite time horizon T>0 and define for 0�t�{�T
the set

At, { =[:: [t, {]_0 [ A; measurable and progressively

measurable with respect to [Fs : s�0]]. (20)

At, { is the set of admissible control strategies on [t, {] when the stochastic
base is fixed. This will be the case for the rest of this section. In the control
problem in Section 4 we will use relaxed controls allowing the stochastic
base to change. Therefore we will pay attention to the fact that our
estimates do not depend on the choice of the stochastic base.

14 GOZZI AND S� WIE� CH
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For 0<t<T, : # At, T , and x # L2(0, X0), we consider the following
DMZ-type equation in X0 :

dY(s)= &A:(s) Y(s) ds+ :
m

k=1

S k
:(s) Y(s) dWk(s),

t<s<T, Y(t)=x. (21)

We first recall the definition of solution for the above equation (see e.g.
[9, Chapter 5, 22, 28])

Definition 3.4. (i) A weak solution of the Eq. (21) is a progressively
measurable process Y # M2([t, T ]; X1) such that, for every h # X1 we have

(Y(s), h) 0, \ =(x, h) 0, \&|
s

t
(A:(r)Y(r), h) (X&1 , X1) dr

+ :
m

k=1
|

s

t
(S k

:(r)Y(r), h) 0, \ dWk(r), \s # [t, T ], P a.s.

(22)

(ii) A strong solution of the Eq. (21) is a progressively measurable
process Y # M2([t, T ]; X2) such that, (21) is satisfied for almost every
s # [t, T ], P a.s.

Given 0�t�T, an admissible control strategy : # At, T , and an initial
datum x # L2(0; X0), a weak (or strong) solution of the state Eq. (21) will
be denoted by Y( } ; t, x, :). We will often denote it simply by Y( } ) when
there is no possibility of confusion.

Remark 3.5. Recalling the well known equivalence between the notion
of adapted and progressively measurable processes on filtered probability
spaces (see e.g. [25, p. 68] or [32, p. 17]), we might have asked adapted
instead of progressively measurable in the above definition. K

The following proposition gathers some results and estimates about
solutions of Eq. (21). Many of them are well known (see for instance
[22, 28, 36]).

Proposition 3.6. Assume that Hypothesis 3.1 holds.

(i) Given 0�t�T, an admissible control strategy : # At, T and an
initial datum x # L2(0; X0) there exists a unique weak solution Y( } ; t, x, :)
of the state equation (21) satisfying:
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v Y # L2(0; C([t, T ], X0)) & M2([t, T ]; X1).

v For every s # (t, T )

&Y(s)&2
0, \ =&x&2

0, \&2 |
s

t
(A:(r) Y(r), Y(r)) (X&1, X1) dr

+ :
m

k=1
|

s

t
(S k

:(r) Y(r), Y(r)) 0, \ dWk(r)

+ :
m

k=1
|

s

t
(S k

:(r) Y(r), S k
:(r) Y(r)) 0, \ dr, (23)

and, in particular

E &Y(s)&2
0, \ =E &x&2

0, \&2E |
s

t
(A:(r) Y(r), Y(r)) (X&1 , X1) dr

+ :
m

k=1

E |
s

t
(S k

:(r) Y(r), S k
:(r)Y(r)) 0, \ dr. (24)

v The solution Y belongs to C([t, T], L2(0; X0)) & L2([t, T];
L2(0; X1)) and, more precisely, for a suitable constant C>0 independent of
the strategy : # At, T

E &Y(s)&2
0, \ �E &x&2

0, \ (1+C(s&t)), (25)

E |
T

t
&Y(s)&2

1, \ ds�CE &x&2
0, \ . (26)

(ii) For every initial condition x # L2(0, X0) we have, for a suitable
constant C>0 independent of the strategy : # At, T

E &Y(s)&2
&1, \ �E &x&2

&1, \ (1+C(s&t)), (27)

E |
T

t
&Y(s)&2

0, \ ds�CE &x&2
&1, \ . (28)

(iii) For every initial condition x # L2(0, X0) we have, for a suitable
constant C>0 independent of the strategy : # At, T

E &Y(s)&x&2
&1, \ �C(s&t) E &x&2

0, \ , (29)

E |
s

t
&Y(r)&x&2

0, \ dr�C(s&t) E &x&2
0, \ , (30)
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and there is a modulus _, independent of the strategy : # At, T such that

E &Y(s)&x&2
0, \�_(s&t). (31)

(iv) If E &x&2
1, \<� then Y is a strong solution and for a suitable

constant C>0 independent of the strategy : # At, T

E &Y(s)&2
1, \ �E &x&2

1, \ (1+C(s&t)), (32)

E |
T

t
&Y(s)&2

2, \ ds�CE &x&2
1, \ , (33)

E &Y(s)&x&2
0, \�CE &x&2

1, \ (s&t), (34)

E |
s

t
&Y(r)&x&2

1, \ dr�C(s&t) E &x&2
1, \ , (35)

and finally

E &Y(s)&x&2
1, \�_(s&t) (36)

for some modulus _ independent of the strategy : # At, T .

Proof. v Proof of (i). The results can be either found or easily deduced
from [22] (see also [36] and [28] for equations without random
coefficients).

v Proof of (ii). By the Ito Formula we have, similarly to (24),

E &Y(s)&2
&1, \ =E &B1�2

\ Y(s)&2
0, \

=E &B1�2
\ x&2

0, \&2E |
s

t
(B1�2

\ A:(r) Y(r), B1�2
\ Y(r)) 0, \ dr

+ :
m

k=1

E |
s

t
(B1�2

\ S k
:(r)Y(r), B1�2

\ S k
:(r)Y(r)) 0, \ dr. (37)

Since

(B1�2
\ A:(r)Y(r), B1�2

\ Y(r)) 0, \=(A:(r)Y(r), B\Y(r)) (X&2, X2)

and

(B1�2
\ S k

:(r)Y(r), B1�2
:(r)S

k
:(r) Y(s)) 0, \=(B\S k

:(r) Y(r), S k
:(r)Y(r)) (X1 , X&1)
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we have, thanks to (13),

E &Y(s)&2
&1, \+

*
2 |

s

t
&Y(r)&2

0, \ dr�E &x&2
&1, \+2K |

s

t
&Y(s)&2

&1, \ dr.

Estimates (27)�(28) follow by applying the Gronwall inequality.

v Proof of (iii). For every initial condition x # L2(0, X0) we have

E &Y(s)&x&2
&1, \=E &Y(s)&2

&1, \+E &x&2
&1, \&2E(Y(s), B\x) 0, \

which gives, by (37) and the definition of weak solution,

E &Y(s)&x&2
&1, \ = &2E |

s

t
[(A:(r)Y(r), B\Y(r)) (X&1 , X1)

& 1
2 (B\S k

:(r)Y(r), S k
:(r) Y(r)) 0, \] dr

&2E |
s

t
(B\A:(r)Y(r), x) 0, \ . (38)

Therefore, by (13),

E &Y(s)&x&2
&1, \+

*
2 |

s

t
&Y(r)&2

0, \ dr

�2KE |
s

t
&Y(r)&2

&1, \ dr+2E |
s

t
&x&0, \ &B\A:(r)Y(r)&0, \ dr

Now (see Lemma 3.2(iii)) for a suitable constant C>0 we have
&B\A:(r) Y(r)&0, \�C &Y(r)&0, \ so that, by (27) and straightforward
calculations,

E &Y(s)&x&2
&1, \+

*
4 |

s

t
&Y(r)&2

0, \ dr�C(s&t)[E &x&2
&1, \+E &x&2

0, \]

for some constant C>0. This proves (29). Estimate (30) follows upon
noticing that

E |
s

t
&Y(r)&x&2

0, \ dr�2E |
s

t
&Y(r)&2

0, \ dr+2E |
s

t
&x&2

0, \

�C(s&t) E &x&2
0, \ .
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To prove (31), fix x # L2(0, X0). Since E &Y(s)&2
0, \ is bounded (in s and :),

there exists a sequence sn � t for n � +� and an element Y� of L2(0, X0)
such that, as n � +�

Y(sn) ( Y� , weakly in L2(0, X0),

and hence also weakly in L2(0, X&1). Since by (29) we know that as
n � +�

Y(sn) � x, strongly in L2(0, X&1)

(and uniformly in :), we obtain that Y� =x. So every weakly convergent
sequence [Y(sn)]sn>0 for sn � t converges to x. This fact, plus the fact that
E &Y(s)&2

0, \ � E &x&2
0, \ for s � t provided by (25) implies that Y(s) � x,

strongly in L2(0, X0) which gives the claim.

v Proof of (iv). Let E &x&2
1, \<�. The existence of the strong solu-

tion is known (see [22]). By the Ito Formula we have

E &Y(s)&2
1, \ =E &x&2

1, \&2E |
s

t
(A:(r)Y(r), Y(r)) (X0 , X2) dr

+ :
m

k=1

E |
s

t
(S k

:(r) Y(r), S k
:(r)Y(r)) 1, \ dr,

i.e.

E &Y(s)&2
1, \ =E &x&2

1, \&2E |
s

t
(A:(r) Y(r), B&1

\ Y(r)) 0 dr

+ :
m

k=1

E |
s

t
(B&1

\ S k
:(r) Y(r), S k

:(r) Y(r)) 0 dr,

which, upon using (12) and applying the same arguments as those in the
proof of (ii), proves (32) and (33). The proof of the final three estimates is
analogous to the similar ones proved in (iii) and is omitted. K

4. OPTIMAL CONTROL PROBLEM FOR THE
DUNCAN�MORTENSEN�ZAKAI EQUATION

We consider the following abstract optimal control problem. Given
0�t�T<� we denote by A� t, T the set of admissible (relaxed) controls
(see e.g. [32, 35]). The set consists of:
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v probability spaces (0, F, P),

v m-dimensional Brownian motions W, on [t, T ].

v measurable processes :: [t, T ]_0 [ A that are FW
t -adapted

where FW
t is the filtration generated by W.

We will use the notation (0, F, P, W, :) # A� t, T . When no ambiguity
arises we will leave aside the probability space (regarding it as fixed) and
consider admissible controls simply as processes : # At, T . From now on we
will write | } | for | } |R .

Let now x # X0 , and (0, F, P, W, :) # A� t, T . We try to minimize the cost
functional:

J(t, x; :( } ))=E {|
T

t
f (Y(s; t, x, :), :(s)) ds+ g(Y(T; t, x, :))= , (39)

where Y( } ; t, x, :) is the solution of (21). We assume

Hypothesis 4.1. (i) f and g are continuous and there exist C>0 and
#<2 such that

| f (x, :)|, | g(x)|�C(1+&x&#
0, \)

for every (x, :) # X0 _A;

(ii) for every R>0 there exists a modulus |R such that

| f (x, :)& f ( y, :)|�|R(&x& y&0, \),
(40)

| g(x)& g( y)|�|R(&x& y&&1, \)

for every x, y # X0 such that &x&0, \ , &y&0, \�R, : # A.

We will refer to functions satisfying (i) as having less than quadratic
growth.

Remark 4.2. We observe that the condition on g in (ii) is satisfied when
g is weakly continuous. This will allow us to treat some nontrivial
examples of partially observed optimal control problems in Section 7. K

The value function is defined as

v(t, x)= inf
:( } ) # A� t, T

J(t, x; :( } )). (41)
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The corresponding Hamilton�Jacobi�Bellman equation of dynamic
programming that should be satisfied by v is:

{
vt+ inf

: # A { 1
2 :

m

k=1

(D2vS k
: x, S k

: x) 0, \&(A:x, Dv) (X&1, X1)+ f (x, :)==0
(42)

in (0, T )_X0 ,
v(T, x)=g(x) in X0 .

We will use the following definition of solution of (42). It is similar to the
one used in [14] that in turn goes back to [5] and [8, Part VII].

Definition 4.3. A function u # C((0, T )_X0) is a viscosity subsolution
(respectively, supersolution) if for every function . # C1, 2((0, T )_X&1)
and for every function $ # C1(0, T ) such that $>0 on [0, T ], whenever
u&(.+($�2) &x&2

0, \) (respectively u&(.&($�2) &x&2
0, \)) has a global

maximum (respectively, minimum) at (t, x) then x # X1 and

0�.t(t, x)+
$$(t) &x&2

0, \

2
+ inf

: # A {
1

2
:
m

k=1

( (D2.(t, x)+$(t) I ) S k
: x, S k

: x) 0, \

&(A:x, D.(t, x)+$(t) x) (X&1, X1)+ f (x, :)= .

(respectively,

0�.t(t, x)&
$$(t) &x&2

0, \

2
+ inf

: # A {
1

2
:
m

k=1

( (D2.(t, x)&$(t) I ) S k
: x, S k

: x) 0, \

&(A:x, D.(t, x)&$(t) x) (X&1, X1)+ f (x, :)= .+
A function is a viscosity solution if it is both a viscosity subsolution and
a viscosity supersolution.

The main result of this paper states that the value function v is the
unique viscosity solution of the HJB Eq. (42). This will be proved in
Sections 5 and 6.

Remark 4.4. If u has less than quadratic growth uniformly for t # (0, T )
and is uppersemicontinuous (respectively, lowersemicontinuous) in | } |R_
& }&&1, \ norm on bounded subsets of (0, T)_X0 then the maximum
(respectively, the minimum) in the definition of a subsolution (respectively,
a supersolution) can be assumed to be strict. To see this, suppose that u&
(.+($�2) &x&2

0, \) has a global maximum at ( t̂, x̂). Let � # C2([0, +�))
be such that �>0, �(r)=r4 if r�1 and �(r)=1 if r�2. Then
u&(.+($�2) &x&2

0, \)&�(&x&x̂&&1, \)&(t& t̂)2 has a global maximum at
(t̂, x̂) and for every maximizing sequence (tn , xn) we must have
lim supn � � &xn&0, \�&x̂&0, \ , and tn � t̂, B\xn � B\ x̂ as n � �. This
implies that xn � x̂.
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Remark 4.5. If u is as in the previous remark then for a test function
. # C1, 2((0, T )_X&1) we can always assume that .(t, x)=0 if &x&&1, \ is
sufficiently big and so we can assume that . and all its derivatives are
bounded. Therefore we can assume that

., .t # BUC((0, T)_X0),

D. # BUC((0, T )_X0 , X1), (43)

D2. # BUC((0, T )_X0 , L(X&1 ; X1)).

We also remark that Ito formula holds for the test functions. The class of
test functions . will be denoted by T.

Remark 4.6. We have defined the family of admissible control strategies
in a wider sense of relaxed controls including in the definition of an
admissible control also the choice of the stochastic base. This approach is
commonly used, in particular to prove the Dynamic Programming
Principle and to analyze existence of optimal strategies and optimality con-
ditions (see e.g. [26, 32]). Of course one can consider another setup of a
fixed stochastic base, for instance a so called canonical sample space, and
then define admissible control strategies as processes adapted to this base.
This seems to be a more prevalent setting for partially observed stochastic
optimal control problems (see [11, 15, 28]). As far as this paper is concerned
the ``fixed-space'' approach would not change the results and methods of
proofs as long as we can prove the Dynamic Programming Principle. We
have chosen the relaxed setting since in this case the Dynamic Programming
Principle that we strongly use here, is well known and easily quotable.

5. PROPERTIES OF THE VALUE FUNCTION AND THE
EXISTENCE RESULT

Proposition 5.1. Assume that Hypotheses 3.1 and 4.1 hold true. Then
for every R>0 there exists a modulus _R such that

|v(t, x)&v(s, y)|�_R( |t&s|+&x& y&&1, \) (44)

for t, s # [0, T ] and &x&0, \ , &y&0, \�R. Moreover

|v(t, x)|�C[1+&x&#
0, \] (45)

for a suitable C>0.

Proof. The last statement follows easily from Hypothesis 4.1 and
(25). We prove the local uniform continuity. Since here no substantial
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difference arises, we will consider controls simply as elements of At, T .
Throughout the proof C will be a constant that can vary from time to time.
By definition

v(t, x)= inf
:( } ) # At, T

E {|
T

t
f (Y(s; t, x, :), :(s)) ds+ g(Y(T; t, x, :))=

so that, taking =>0 and :=, y # At, T such that v(t, y)>J(t, y; :=, y( } ))&=,
we have

v(t, x)&v(t, y)�J(t, x; :=, y( } ))&J(t, y; :=, y( } ))+=

=E {|
T

t
[ f (Y(s; t, x, :=, y), :=, y(s))

& f (Y(s; t, y, :=, y), :=, y(s))] ds=
+E[g(Y(T; t, x, :=, y))& g(Y(T; t, y, :=, y))]+=

so that, given R>&x&0, \ 6 &y&0, \ we get, writing Yx(s) for Y(s; t, x, :=, y)
and Yy(s) for Y(s; t, y, :=, y),

v(t, x)&v(t, y)�E |
T

t
|R(&Yx(s)&Yy(s)&0, \) ds

+C |
T

t
P(&Yx(s)&0, \ 6 &Yy(s)&0, \�R)1&#�2

_(E[1+&Yx(s)&2
0, \+&Yy(s)&2

0, \])#�2 ds

+E|R(&Yx(T )&Yy(T )&&1, \)

+CP(&Yx(T )&0, \ 6 &Yy(T )&0, \�R)1&#�2

_(E[1+&Yx(T )&2
0, \+&Yy(T )&2

0, \])#�2+=

Now, by the linearity of the state equation we have that for every s # [t, T ]

Y(s; t, x, :=, y)&Y(s; t, y, :=, y)=Y(s; t, x& y, :=, y)

and thus, denoting Y(s; t, x& y, :=, y) by Yx& y(s) we obtain (by (25) and
(27)) that, for j=&1, 0,

E|R(&Yx(s)&Yy(s)&j, \)=E|R(&Yx& y(s)& j, \)

�=+C=E &Yx& y(s)&j, \

�=+C=[E &Ys& y(s)&2
j, \]1�2

�=+C=[&x& y&2
j, \ (1+C(s&t))]1�2.
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Moreover by the Chebychev inequality and (25) we get that for sufficiently
big R

sup
s # [t, T ]

P(&Yx(s)&0, \ 6 &Yy(s)&0, \�R)�
C(&x&2

0, \+&y&2
0, \)

R2 <=

which upon using (28) gives

|
T

t
P(&Yx(s)&0, \ 6 &Yy(s)&0, \�R)1&#�2

_(E[1+&Yx(s)&2
0, \+&Yy(s)&2

0, \])#�2 ds

�C _|
T

t
P(&Yx(s)&0, \ 6 &Yy(s)&0, \�R)&

1&#�2

__|
T

t
E[1+&Yx(s)&2

0, \+&Yy(s)&2
0, \] ds&

#�2

�C=1&#�2([1+&x&2
&1, \+&y&2

&1, \](1+C(T&t)))#�2,

and similarly

P(&Yx(T )&0, \ 6 &Yy(T )&0, \�R)1&#�2

_(E[1+&Yx(T )&2
0, \+&Yy(T )&2

0, \])#�2

�=1&#�2([1+&x&2
0, \+&y&2

0, \](1+C(T&t)))#�2

so that

v(t, x)&v(t, y)�|
T

t
=+C=[E &Yx& y(s)&2

0, \]1�2 ds

+C=1&#�2([1+&x&2
&1, \+&y&2

&1, \](1+C(T&t)))#�2

+=+C=[&x& y&2
&1, \ (1+C(T&t))]1�2

_=1&#�2([1+&x&2
0, \+&y&2

0, \](1+C(T&t)))#�2+=.

Denoting by |0(=) a quantity that goes to 0 as = goes to 0, uniformly for
x, y in bounded subsets of X0 , and using (28) we obtain

v(t, x)&v(t, y)

�|0(=)+C=(T&t)1�2 _E |
T

t
&Y(s; t, x& y, :=, y)&2

0, \ ds&
1�2

+C=(1+C(T&t))1�2 &x& y&&1, \

�|0(=)+C=((T&t)1�2 C1�2+(1+C(T&t))1�2) &x& y&&1, \

which yields the required continuity in x.
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We now prove the continuity in the time variable. Take 0�t1�t2 , =>0,
and a control strategy :=, t2

# At2 , T such that v(t2 , x)>J(t2 , x; :=, t2
( } ))&=.

Set for a given :� 0 # A

:� =, t2
(s)={:� 0

:=, t2
(s)

for s # [t1 , t2)
for s # [t2 , T ]

It clearly belongs to At1, T and

v(t1 , x)&v(t2 , x)�=+E[g(Y(T; t1 , x, :� =, t2
))& g(Y(T; t2 , x, :=, t2

))]

+E {|
T

t1

f (Y(s; t1 , x, :� =, t2
), :� =, t2

(s)) ds

&|
T

t2

f (Y(s; t2 , x, :=, t2
), :=, t2

(s)) ds=
=E {|

t2

t1

f (Y(s; t1 , x, :� 0), :� 0) ds

+|
T

t2

[ f (Y(s; t1 , x, :� =, t2
), :=, t2

(s))

& f (Y(s; t2 , x, :=, t2
), :=, t2

(s))] ds=
+E[g(Y(T; t1 , x, :� =, t2

))& g(Y(T; t2 , x, :=, t2
))]+=

so that, writing Y1(s) for Y(s; t1 , x, :� =, t2
) and Y2(s) for Y(s; t2 , x, :=, t2

),

v(t1 , x)&v(t2 , x)�=+|
t2

t1

E | f (Y(s; t1 , x, :� 0), :� 0)| ds

+E |
T

t2

|R(&Y1(s)&Y2(s)&0, \) ds

+C |
T

t
P(&Y1(s)&0, \ 6 &Y2(s)&0, \�R)1&#�2

_(E[1+&Y1(s)&2
0, \+&Y2(s)&2

0, \])#�2 ds

+E|R(&Y1(T )&Y2(T )&&1, \)

+CP(&Y1(T )&0, \ 6&Y2(T )&0, \�R)1&#�2

_(E[1+&Y1(T )&2
0, \+&Y2(T )&2

0, \])#�2. (46)
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Now arguing as previously we estimate the terms in the second and fourth
lines of the right hand side, while for the others we observe that

|
t2

t1

E | f (Y(s; t1 , x, :� 0), :� 0)| ds

�C(t2&t1)[1+ sup
s # [t1 , t2]

E &Y(s; t1 , x, :� 0)&#
0, \]

and, since

Y1(s)&Y2(s)=Y(s; t2 , Y(t2 ; t1 , x, :� 0)),

E |
T

t2

&Y1(s)&Y2(s)&2
0, \ ds

+E &Y1(T )&Y2(T )&2
&1, \�C(t2&t1) &x&2

0, \ .

The rest of the proof follows the arguments used in the proof of the
continuity in x. One obtains that there is a modulus _R such that

v(t1 , x)&v(t2 , x)�_R(t2&t1).

for &x&0, \�R. The reverse inequality can be obtained by the same
method. K

Remark 5.2. We observe that assuming instead of (40) that

| f (x, :)& f ( y, :)|�|R(&x& y&1, \), | g(x)& g( y)|�|R(&x& y&0, \)

we would get (by similar arguments) the uniform continuity of v in x in the
X0 norm. Moreover if |R does not depend on R the proof provides the
uniform continuity on the whole space. K

We will need the dynamic programming principle that is stated below in
a simple form. It will not be reproved here even though there seems to be
no quotable reference for infinite dimensional problems. However since the
value function is continuous and we deal with relaxed controls the proof
follows standard arguments, see for instance [32] (see also [21]).

Proposition 5.3. For every 0�t�{�T and x # X0 we have

v(t, x)= inf
:( } ) # A� t, T

E {|
T

t
f (Y(s; t, x, :), :(s)) ds+ g(Y(T; t, x, :))=

= inf
:( } ) # A� t, {

E {|
{

t
f (Y(s; t, x, :), :(s)) ds+v({, Y({; t, x, :))= .
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Theorem 5.4. Assume that Hypotheses 3.1 and 4.1 are true. Then the
value function v is the unique viscosity solution of the HJB Eq. (42) that
satisfies (44) and (45).

Proof. The uniqueness part will follow from Theorem 6.1. Here we will
only prove that v is a viscosity solution. The main difficulty of the proof
comes from the fact that we have to deal with the unbounded operators S k

:

and A: . The outline of the proof is the following. First of all we show that
the maximum (minimum) points in the definition of sub-(super) solution
are in X1 . This part follows the strategy used in [14] and earlier in [5]
and [8, Part VII]. Then we use the dynamic programming principle and
carefully apply various estimates for solutions of the state equation to pass
to the limit and obtain the inequalities in Definition 4.3. We will only show
that the value function is a viscosity supersolution. The subsolution part is
very similar and in fact easier. We will omit the subscript \ in the norm
and inner product notation throughout the proof. Since here no substantial
difference arises, we will consider controls simply as elements of At, T .

Let . # T and $ # C1(0, T ) be such that $>0 on [0, T ]. Let v&
(.&($�2) &x&2

0) have a global minimum at (t0 , x0) # (0, T )_X0 .

Step 1. We prove that x0 # X1 .
For every (t, x) # (0, T )_X0

v(t, x)&v(t0 , x0)�.(t, x)&.(t0 , x0)& 1
2 [$(t) &x&2

0&$(t0) &x0&2
0].

(47)

By the dynamic programming principle for every =>0 there exists :=( } ) #
At0 , t0+= such that, writing Y=(s) for Y(s; t0 , x0 , :=), we have

v(t0 , x0)+=2>E {|
t0+=

t0

f (Y=(s), :=(s)) ds+v(t0+=, Y=(t0+=))= .

Then, by (47),

=2&E |
t0+=

t0

f (Y=(s), :=(s)) ds

�Ev(t0+=, Y=(t0+=))&v(t0 , x0)

�E.(t0+=, Y=(t0+=))&.(t0 , x0)

& 1
2[$(t0+=) E &Y=(t0+=)&2

0&$(t0) &x0&2
0]
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and, by (47) and the Ito Formula,

=2&E |
t0+=

t0

f (Y=(s), :=(s)) ds

�E |
t0+=

t0
_.t(s, Y=(s))&(A:=(s) Y=(s), D.(s, Y=(s))) (X&1, X1)

+ 1
2 :

m

k=1

(D2.(s, Y=(s)) S k
:=(s)Y(s), S k

:=(s) Y=(s))0& ds

& 1
2E |

t0+=

t0

$$(s) &Y=(s)&2
0

&|
t0+=

t0

$(s) _&(A:=(s) Y=(s), Y=(s)) (X&1, X1)

+ 1
2 :

m

k=1

(S k
:=(s) Y=(s), S k

:=(s) Y=(s)) 0& ds.

We now divide both sides of this inequality by = to obtain

=&E
1
= |

t0+=

t0

f (Y=(s), :=(s)) ds

�E
1
= |

t0+=

t0

.t(s, Y=(s)) ds

&E
1
= |

t0+=

t0

(A:=(s)Y=(s), D.(s, Y=(s))) (X&1 , X1) ds

+
1
2

E
1
= |

t0+=

t0

:
m

k=1

(D2.(s, Y=(s)) S k
:=(s) Y=(s), S k

:=(s) Y=(s)) 0 ds

+E
1
= |

t0+=

t0

$(s) _(A:=(s)Y=(s), Y=(s)) (X&1 , X1) ds

&
1
2

:
m

k=1

(S k
:=(s) Y=(s), S k

:=(s)Y=(s)) 0& ds

&
1
2

E |
t0+=

t0

$$(s) &Y=(s)&2
0 ds. (48)
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By Hypothesis 3.1 and (11) we have

E
1
= |

t0+=

t0

$(s) _(A:=(s)Y=(s), Y=(s)) (X&1 , X1) ds

&
1
2

:
m

k=1

(S k
:=(s)Y=(s), S k

:=(s) Y=(s)) 0& ds

�E
1
= |

t0+=

t0

$(s) _*
4

&Y=(s)&2
1&K &Y=(s)&2

0& ds.

The regularity of . yields (recall Remark 4.5)

(A:=(s)Y=(s), D.(s, Y=(s))) (X&1, X1)

=(B1�2
\ A:=(s) , B&1�2

\ D.(s, Y=(s))) 0�C &Y=(s)&1

and

:
m

k=1

(D2.(s, Y=(s)) S k
:=(s)Y=(s), S k

:=(s)Y=(s)) (X1 , X&1)�C &Y=(s)&2
0

Therefore, using the above inequalities, the assumptions on the rate of
growth of f, and again Remark 4.5 (.t can be assumed to be bounded), we
get from (48)

*
4=

E |
t0+=

t0

$(s) &Y=(s)&2
1 ds�C _1+E

1
= |

t0+=

t0

$(s) &Y=(s)&2
0 ds& .

Take now ==1�n and set Yn(s)=Y(s; t0 , x0 , :1�n). The above inequality
yields

n |
t0+1�n

t0

E &Yn(s)&2
1 ds�C

so that, along a sequence tn # (t0 , t0+1�n),

E &Yn(tn)&2
1�C,

and thus along a subsequence, still denoted by tn , we have

Yn(tn) ( Y�

weakly in L2(0; X1) for some Y� # L2(0; X1). This clearly implies also weak
convergence in L2(0; X0). But we know by Proposition 3.6(iii) that
Yn(tn) � x0 strongly (and weakly) in L2(0; X0) since the modulus in (31)
is independent of :. This proves that x0 # X1 .
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Step 2. The supersolution inequality.
Consider the inequality (48). Applying Chebychev inequality and argu-

ing as in the proof of (44) we observe that for every =>0 there exists
R(=)>0 such that

}E 1
= |

t0+=

t0

[ f (Y=(s), :=(s)) ds& f (x0 , :=(s))] ds }
�=+E

1
= |

t0+=

t0

|R(=)(&Y=(s)&x0&0) ds

which, using Proposition 3.6(iv), gives

}E 1
= |

t0+=

t0

[ f (Y=(s), :=(s)) ds& f (x0 , :=(s))] ds }�|0(=).

Similarly, by the continuity properties of .t and $$ (see Remark 4.4), we
obtain

} E 1
= |

t0+=

t0

.t(s, Y=(s)) ds&.t(t0 , x0)}�|0(=),

}E 1
= |

t0+=

t0

$(s) &Y=(s)&2
0&$$(t0) &x0&2

0 }�|0(=).

Moreover

}E 1
= |

t0+=

t0

[(A:=(s) Y=(s), D.(s, y=(s))) (X&1 , X1)

&(A:=(s) x0 , D.(t0 , x0)) (X&1, X1)] ds }
�E

1
= _} |

t0+=

t0

(A:=(s)(Y=(s)&x0), D.(s, Y=(s))) (X&1, X1) } ds

+|
t

t0

|(A:=(s) x0 , D.(s, Y=(s))&D.(t0 , x0)) (X&1 , X1) | ds&
so that, observing that

E |(A:=(s)(Y=(s)&x0), D.(s, Y=(s))) (X&1 , X1) |�CE &Y=(s)&x0&1

and

E |(A:=(s) x0 , D.(s, Y=(s))&D.(t0 , x0)) (X&1, X1) |

�C &x0&1 E|.( |s&t0 |+&Y=(s)&x0&0),
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we obtain in light of Proposition 3.6(iv) that

}E 1
= |

t0+=

t0

[(A:=(s) Y=(s), D.(s, Y=(s))) (X&1, X1)

&(A:=(s) x0 , D.(t0 , x0)) (X&1 , X1)] ds }�|0(=).

Finally we have

E
1
= |

t0+=

t0
_ :

m

k=1

(D2.(s, Y=(s)) S k
:=(s)Y=(s), S k

:=(s)Y=(s)) 0 ds

& :
m

k=1

(D2.(t0 , x0) S k
:=(s)x0 , S k

:=(s)x0)0& ds

=E
1
= |

t0+=

t0

:
m

k=1

(D2.(s, Y=(s)) S k
:=(s)(Y=(s)&x0), S k

:=(s)Y=(s)) 0 ds

+E
1
= |

t0+=

t0

:
m

k=1

(D2.(s, Y=(s)) S k
:=(s)x0 , S k

:=(s)(Y=(s)&x0)) 0 ds

+E
1
= |

t0+=

t0

:
m

k=1

([D2.(s, Y=(s))&D2.(t0 , x0)]

_S k
:=(s) x0 , S k

:=(s) x0) 0 ds.

Now observing that

E |(D2.(s, Y=(s)) S k
:=(s)(Y=(s)&x0), S k

:=(s)Y=(s)) 0 |

�C &Y=(s)&x0&0 &x0&0 ,

E |(D2.(s, Y=(s)) S k
:=(s) x0 , S k

:=(s)(Y=(s)&x0)) 0 |

�C &Y=(s)&x0&0 &x0&0 ,

and

E |([D2.(s, Y=(s))&D2.(t0 , x0)] S k
:=(s)x0 , S k

:=(s)x0) 0 |

�C &x0&2
0 E|.( |s&t0 |+&Y=(s)&x0&0)

we obtain

}E 1
= |

t0+=

t0
_ :

m

k=1

(D2.(s, Y=(s)) S k
:=(s)Y=(s), S k

:=(s)Y=(s)) 0 ds

& :
m

k=1

(D2.(t0 , x0) S k
:=(s) x0 , S k

:=(s)x0) 0& ds }�|0(=).
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We also have analogous estimates for the terms containing $ (the method
to produce them is the same as what we have shown above so we omit the
calculations). Using all these estimates in (48) we obtain

.t(t0 , x0)&
$$(t0) &x0&2

0

2

+
1
2

E
1
= |

t0+=

t0

( (D2.(t0 , x0)&$(t0) I ) S:=(s) x0 , S:=(s)x0) 0 ds

&E
1
= |

t0+=

t0

(A:=(s)x0 , D.(t0 , x0)&$(t0) x0) (X&1 , X1) ds

+E
1
= |

t0+=

t0

f (x0 , :=(s)) ds�|0(=)

The claim now follows upon taking first the infimum over : # A inside the
integral and then letting = � 0. This concludes the proof of the supersolu-
tion part. K

6. UNIQUENESS

In this section we will prove a comparison result for viscosity sub- and
supersolutions of (42). As a corollary we will obtain that the value function
is the unique solution of (42).

Let [en]�
n=1 /X0 be an orthonormal basis in X&1 . Let XN=

span[e1 , ..., eN]. Denote by PN the orthogonal projection from X&1 onto
XN, let QN=I&PN (I is the identity in X&1), and YN=QN X&1 . We then
have an orthogonal decomposition X&1=X N_YN. For x # X&1 we will
write x=(PNx, QNx) and denote xN=PNx, and x=

N=QNx. It follows
from the Closed Graph Theorem that PN : X&1 � X0 and QN : X0 � X0

(the restriction of QN) are bounded as maps between the indicated spaces.
Also, if P*N , Q*N are the adjoints of PN , QN regarded as maps from X0 to
X0 then P*NB\PN=B\PN and Q*NB\QN=B\ QN . Finally &B1�2

\ QNx&0, \

� 0 as N � � for every x # X&1 .

Theorem 6.1. Let Hypotheses 3.1 and 4.1 hold. Let u, v: (0, T )_X0 � R
be respectively a viscosity subsolution, and a viscosity supersolution of (42).
Let u, &v be bounded on bounded subsets of (0, T )_X0 , upper semicon-
tinuous in | } |R_& }&&1, \ norm on bounded subsets of (0, T )_X0 , and such
that

lim sup
&x&0, \ � �

u(t, x)
&x&2

0, \

�0, lim sup
&x&0, \ � �

&v(t, x)
&x&2

0, \

�0. (49)
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uniformly for t # [0, T]. Let

{(i)
(ii)

limt A T (u(t, x)& g(x))+=0
limt A T (v(t, x)& g(x))&=0

(50)

uniformly on bounded subsets of X0 . Then u�v.

Proof. As in the previous section we will drop the subscript \ in the
notation for norms, inner products, and operators.

Step 1. Without loss of generality we can assume that u and &v are
bounded from above and such that

lim
&x&0 � �

u(t, x)=&�, lim
&x&0 � �

v(t, x)=+�. (51)

To see this we claim that if K is the constant from (11) then for every '>0

u'(t, x)=u(t, x)&'e2K(T&t) &x&2
0 , v'(t, x)=v(t, x)+'e2K(T&t) &x&2

0

are viscosity sub- and supersolutions of (42) and satisfy (50). This follows
from (11) since, denoting �(t, x)='2K(T&t) &x&2

0 , we have

�t+ inf
: # A { 1

2 :
m

k=1

(D2�S k
: x, S k

: x) 0&(A:x, D�) (X&1 , X1) =
�&'Ke2K(T&t) &x&2

0�0.

The functions u' , &v' satisfy (51) in light of (49). Therefore, if we can
prove that u'�v' for every '>0 we will recover u�v by letting ' � 0.

Step 2. Replacing u and v by

u+=u&
+
t

, v+=v+
+
t

for +>0 we have that

lim
t � 0

v+(t, x)=&�, lim
t � 0

v+(t, x)=+�, (52)

uniformly for x # X0 , and u+ (respectively, v+) is a subsolution (respectively,
a supersolution) of (42) with the right hand side being +�T 2 (respectively,
&+�T 2). If we can prove that u+�v+ then we will obtain u�v by letting
+ � 0.
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Step 3. To keep the number of indices down we will write u for u+ and
v for v+ throughout the rest of the proof. We argue by contradiction.
Suppose that u�� v. Let =, $, ;>0, and let

.(t, s, x, y)=u(t, x)&v(s, y)&
&x& y&2

&1

2=
&$(&x&2

0+&y&2
0)&

(t&s)2

2;
.

Since upper semicontinuity in & }&&1 on bounded subsets of (0, T )_X0

implies upper semicontinuity in & }&&2 (see for instance [8, Part V]), using
perturbed optimization results (see for instance [29]) and (51) we have
that for every n # N there exist pn , qn # X0 , an , bn # R such that &pn &0 ,
&qn&0 , |an |, |bn |�1�n, and

.(t, s, x, y)+(Bpn , x) 0+(Bqn , y) 0+an t+bn s

has a global maximum at (t� , s� , x� , y� ) which we may assume to be strict (see
Remark 4.4). Standard arguments (see for instance [18, 19]) give

lim sup
; � 0

lim sup
n � �

(t� &s� )2

2;
=0 for fixed =, $, (53)

lim sup
$ � 0

lim sup
; � 0

lim sup
n � �

$(&x� &2
0+&y� &2

0)=0 for fixed =, (54)

and

lim sup
= � 0

lim sup
$ � 0

lim sup
; � 0

lim sup
n � �

&x� & y� &2
&1

2=
=0. (55)

Therefore, it follows from (50), (51), (52), and (53) that 0<t� , s� <T, and
&x� &0 , &y� &0 are bounded independently of =, $, ;, n. We now fix N # N.
Then

&x& y&2
&1=(BPN(x& y), PN(x& y)) 0+(BQN(x& y), QN(x& y)) 0 .

Moreover

(BQN(x& y), QN(x& y)) 0

�2(BQN(x� & y� ), x& y) 0&(BQN(x� & y� ), x� & y� ) 0

+2 &B1�2QN(x&x� )&2
0+2 &B1�2QN( y& y� )&2

0
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with equality if x=x� , y= y� . Therefore, if

u1(t, x)=u(t, x)&
1
2=

((2BQN(x� & y� ), x) 0+(2BQN(x&x� ), (x&x� )) 0

+(BQN(x� & y� ), (x� & y� )) 0)&$ &x&2
0+(Bpn , x) 0+an t

and

v1(s, y)=v(s, y)+
1
2=

((2BQN(x� & y� ), y) 0+(2BQN( y& y� ), ( y& y� )) 0)

+$ &y&2
0&(Bqn , y) 0&bns

we have that

u1(t, x)&v1(s, y)&
&PN(x& y)&2

&1

2=
&

(t&s)2

2;

has a strict global maximum at (t� , s� , x� , y� ). Because of the behavior of u and
v at � we see that the functions u1 and &v1 are upper-semicontinuous
in (0, T )_X&1 . This means that u1 and &v1 are equal to &� for
x # X&1"X0 . Define

u~ 1(t, xN)= sup
x=

N # Y
0
N

u1(t, xN , x=
N), v~ 1(s, yN)= inf

yN # Y
0
N

v1(s, yN , y=
N).

Then

(u~ 1)* (t, x)&(v~ 1)
*

(s, y)&
&PN(x& y)&2

&1

2=
&

(t&s)2

2;

has a strict global maximum at (t� , s� , x� N , y� N) in (0, T )_(0, T )_XN_XN,
where (u~ 1)* is the upper-semicontinuous envelope of u~ 1 and (v~ 1)

*
is the

lower-semicontinuous envelope of v~ 1 . We now apply a finite dimensional
result (see for instance Theorem 3.2 of [6]) to produce appropriate test
functions. For details of this procedure the reader can consult Lemma 6.4
of [19], together with [7, 14, 31]. We obtain that there exist functions .i ,
�i # C1, 2((0, T )_X N) (and hence in C1, 2((0, T )_X&1) when viewed as
cylindrical functions, and satisfying D.i # C((0, T )_X0 , X2), D2.2 #
C((0, T )_X0 , L(X&1 , X1))) and points t i , si # (0, T ), x i

N , y i
N # X N such

that

ti � t� , si � s� , x i
N � x� N , y i

N � y� N (56)

(u~ 1)* (ti , x i
N) � (u~ 1)* (t� , x� N), (v~ 1)

*
(si , y i

N) � (v~ i)* (s� , y� N) (57)
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as i � �, and such that (u~ )*&.i , and &(v~ 1)
*

+�i have strict, global
maxima at (ti , X i

N), and (si , y i
N) respectively. Moreover we have

(.i)t (t i , x i
N) �

t� &s�
;

, (�i)t (si , y i
N) �

t� &s�
;

, (58)

D.i (t i , x i
N) �

1
=

BPN(x� N& y� N) in X2 ,

D�i (si , y i
N) �

1
=

BPN(x� N& y� N) in X2 , (59)

D2.i (t i , x i
N) � LN , D2�i (si , y i

N) � MN in L(X&1 , X1) (60)

as i � �, where LN , MN are bounded independently of i and satisfy

\LN

0
0

&MN+�
1+&

= \ BPN

&BPN

&BPN

BPN + (61)

for a certain & that will be chosen later. Putting everything back together,
and once again applying perturbed optimization results, it follows that for
every i # N there exist p̂i , q̂i # X, â i , b� i # R such that &p̂i &0 , &q̂i&0 , |â i |,
|b� i |�1�i, and

u1(t, x)&v1(s, y)&.i (t, x)+�i (s, y)+(Bp̂i , x) 0+(Bq̂ i , y) 0+âi t+b� is

has a strict, global maximum at (t̂i , ŝi , x̂ i , ŷi). It is then rather standard
(see [7, 14]) to show that

(t̂i , ŝi , x̂i , ŷi) � (t� , s� , x� , y� ), (62)

and

u1( t̂i , x̂i) � ui (t� , x� ), v1(ŝi , ŷi) � v1(s� , y� ) (62)

as i � �. Using the fact that u is a viscosity subsolution we therefore
obtain

+
T 2� &an&ai+(.i)t ( t̂i , x̂i)

+ inf
: # A {

1
2

:
m

k=1
�\D2. i ( t̂ i , x̂i)+

2
=

BQN+2$I+ S k
: x̂i , S k

: x̂ i�0

&�A: x̂i , D.i (t̂ i , x̂i)+
2BQN(x̂ i&x� )

=

+2$x̂i&Bpn&Bp̂ i�(X&1, X1)
+ f (x̂i , :)= . (64)
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We now pass to the limit in (64) as i � �. To begin we notice that by (11)
for every : # A

:
m

k=1

(S k
: x̂i , S k

: x̂i) 0&(A: x̂i , x̂i) (X&1 , X1)�2$K &x̂ i&2
0 � 2$K &x� &2

0

as i � �. (In fact one can prove x̂i ( x� in X1). Using this, (58)�(60),
Lemma 3.2(iii), and the fact that x̂i � x� as i � � we obtain upon passing
to limsup as i � � in (64) that

&an+
t� &s�

;
+ inf

: # A {
1
2

:
m

k=1 �\LN+
2
=

BQN+ S k
: x� , S k

: x� �0

&�A:x� ,
B(x� & y� )

=
&Bpn�(X&1 , X1)

+ f (x� , :)=+2$K &x� &2
0

�
+

T 2 . (65)

For the supersolution v we produce similarly

bn+
t� &s�

;
+ inf

: # A {
1
2

:
m

k=1
�\MN&

2
=

BQN+ S k
: y� , S k

: y� �0

&�A: y� ,
B(x� & y� )

=
+Bqn�&X&1 , X1

+ f ( y� , :)=&2$K &y� &2
0

�&
+

T 2 . (66)

By Hypothesis 3.1 the closures of the sets [S k
: x� : : # A, 1�k�m] and

[S k
: y� : : # A, 1�k�m] are compact in X0 , and hence in X&1 . This yields

that

sup [&BQNS k
: x� &0 : : # A, 1�k�m],

(67)
sup [&BQNS k

: y� &0 : : # A, 1�k�m] � 0

as N � �. Moreover, (61) implies that

(LN S k
: x� , S k

: x� ) 0&(MNS k
: y� , S k

: y� ) 0�(BS k
:(x� & y� ), S k

:(x� & y� )) 0 . (68)
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Therefore, subtracting (65) from (66) and using (67) and (68), we have

an+bn+ inf
: # A {&

1+&
2=

:
m

k=1

(BS k
:(x� & y� ), S k

:(x� & y� )) 0

+
1
=

(A:(x� & y� ), B(x� & y� )) (X&1 , X1) =
&|R(&x� & y� &0)&2$K(&x� &2

0+&y� &2
0)&_(N, n)� &

2+
T 2 (69)

for some local modulus _. The number R is chosen so that &x� &0 , &y� &0�R
independently of n, ;, $, = which is possible in light of Step 1. Now, if & is
small enough it follows from (13) that

an+bn+
*1

=
&x� & y� &2

0&
K1

=
&x� & y� &2

&1

&|R(&x� & y� &0)&2$K(&x� &2
0+&y� &2

0)&_(N, n)� &
2+
T 2 (70)

for some *1 , K1>0. Since |R is a modulus we have

lim
= � 0

inf
r�0 \

*1

=
r2&|R(r)+=0. (71)

Therefore we obtain a contradiction in (70) after sending N � �, n � �,
; � 0, $ � 0, = � 0 in the above order, and using (54), (55), and (71). K

Remark 6.2. The condition that u is upper-semicontinuous in | } |R_
& }&&1, \ on bounded subsets of (0, T )_X0 is equivalent to the requirement
that if xn ( x, tn � t and B\xn � B\x as n � � then

lim sup
n � �

u(tn , xn)�u(t, x),

which is the notion of B-upper-semicontinuity used in [8, Part V]. K

7. APPLICATION TO PARTIALLY OBSERVED STOCHASTIC
OPTIMAL CONTROL PROBLEMS

We devote this section to show how the results of the paper can be
applied to the dynamic programming approach to stochastic optimal con-
trol problems with partial observation and correlated noises. To be more
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precise we will consider the so-called ``separated'' problem (see e.g. [2,
11, 27]). Our setting of the partially observed control system is partly
borrowed from [15�17, 27, 34, and 35]. We will recall it briefly here.

7.1. An Optimal Control Problem with Partial Observation
Given a stochastic base (0, F, (Fs)s # [t, T ] , P) we consider a random

state process Z1 in Rd and a random observation process Y1 in Rm. (We
could also consider the state process to be infinite dimensional, see [1]).

The state-observation equation is

dZ1(s)=b1(Z1(s), :(s)) ds+_1(Z1(s), :(s)) dW 1(s)

+_2(Z1(s), :(s)) dW 2(s);

Z1(t)=!1 # L2(0, Rd),

dY1(s)=h(Z1(s)) ds+dW 2(s);

Y1(t)=0,

where W 1 and W 2 are two independent Brownian motions on Rd and
Rm respectively. Using the same notation as in Section 3.2 the control set
A is now a closed subset of Rn, and a control strategy is a process
:: [t, T ]_0 [ A/Rn that is progressively measurable with respect to
the filtration [FY1

s ; s # [t, T ]] generated by the observation process Y1 .
The set of such control strategies will be denoted by At, T . We will later
let the probability spaces vary as we have done in Section 4 and we will
work with relaxed controls. We assume the following:

Hypothesis 7.1. The set A is a closed subset of Rn. The functions

b1: Rd_A [ Rd; h: Rd [ Rm

are uniformly continuous and b1( } , :), h have their C2(Rd) norms bounded,
uniformly for : # A. Moreover the functions

_1: Rd_A [ L(Rd, Rd); _2: Rd_A [ L(Rm, Rd);

are uniformly continuous and _1( } , :), _2( } , :) have their C3(Rd) norms
bounded, uniformly for : # A, and

_1(x, :)[_1(x, :)]T�*I>0

for some *>0 and all x # Rd, : # A.

This assumption obviously guarantees in particular the existence of a
unique strong solution of the above state Eq. (see e.g. [20]).

We now consider the problem of minimizing the cost functional

J(t, !1 ; :)=E {|
T

t
f1(Z1(s), :(s)) ds+ g1(Z1(T ))= .
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over all admissible controls where the cost functions

f1 : Rd_Rn [ R; g1 : Rd [ R

are suitable continuous functions with polynomial growth at infinity.

7.2. The Separated Problem

One way of dealing with the partially observed stochastic optimal con-
trol problem introduced in the previous section is through the so called
``separated'' problem (see [2, 11, 27]) that will be outlined below. To be
able to do this we need to assume the following hypothesis about the initial
condition !1 :

Hypothesis 7.2. The initial condition !1 of the state variable Z1 is a
random variable with density p0 # L2

\(Rd ) for some \ of the form (see (4))

\;(!)=(1+|!| 2
Rd );�2, ;>d�2.

Recall first that, taking the new probability

P� =}&1(T ) P,

where

}(s)=exp _|
s

t
h(Z1(r)) dY1(r)& 1

2 |
s

t
|h(Z1(r))|2 dr&

the processes W1 and Y1 become two independent Brownian motions on
Rd and Rm respectively.

The ``separated'' problem replaces the original problem by the problem
of controlling the unnormalized conditional probability density p( } ): [t, T ]
[ L2

\(Rd)=X0 of the state process Z1 given the observation Y1 . Under the
above Hypothesis 7.2 the equation for the unnormalized conditional
probability density is well posed in X0 and is given by the DMZ equation

dp(s)=&A:(s) p(s) ds+ :
m

k=1

S k
:(s) p(s) dY1, k(s), p(t)= p0 . (72)

where

(A:x)(!)= & :
d

i, j=1

�i[ai, j (!, :) �j x(!)]+ :
d

i=1

�i[bi (!, :) x(!)], (73)
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and

(S k
: x)(!)= :

d

i=1

dik(!, :) � i x(!)+ek(!, :) x(!); k=1, ..., m, (74)

where

a(!, :)=_1(!, :)[_1(!, :)]T+_2(!, :)[_2(!, :)]T,

bi (!, :)=b1
i (!, :)&� j ai, j (!, :); i=1, ..., d,

d(!, :)=&_2(!, :),

ek(!, :)=hk(!)&�i _2
ik(!, :); k=1, ..., m,

D(A:)=H 2
\(Rd)=X2 ; D(S k

:)=H 1
\(rd)=X1 .

Notice that if Hypothesis 7.1 is satisfied then the above operators A: and
S k

: satisfy (7).

Remark 7.3. Hypothesis 7.2 can be seen, roughly speaking, as a double
requirement that:

v the variable !1 has a density so that the separated problem can be
set in a space of functions instead of a space of measures. Such a setting has
been considered e.g. in [10] and in [17] when the corresponding HJB
equation is studied but no uniqueness result is obtained.

v the density p0 is polynomially decreasing when |!|Rd � +� with
the decay rate of order bigger than ;+d�2. This is of course a further
restriction with respect to assuming only p0 # L1(Rd) but it is verified in
many practical cases, for instance when the starting distribution is normal.
One can consult e.g. [2, p. 36, 204] for the use of p0 being Gaussian or
[2, pp. 82, 167] for other integrability assumptions on p0 (see also
[28, 34]). If we only assume p0 # L1(Rd) then the separated problem can
still be considered however our results do not apply since we do not study
HJB equations in this space. K

At this point we have to start explaining why we have chosen to work
with the ``separated'' problem in weighted spaces L2

\(Rd). We hope the
reason for this will become clear soon. Here we just want to say that
``separated'' problems are usually not well posed in L2(Rd). However for a
large reasonable class of cost functions and initial densities (see the com-
ments after Theorem 7.6, Example 7.7, and Remark 7.3) they are well posed
in a space L2

\(Rd) for a suitable weight function \. This approach also has
the advantage that we stay within the framework of Hilbert spaces that is
essential for the treatment of the associated HJB equation.

Using the new state Eq. (72) the functional to minimize can now be
written in terms of the unnormalized conditional density p as follows:
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J(t, !1 ; :)=J(t, p0 ; :)=E� {|
T

t
( f1( } , :(s)), p(s)) 0 ds+(g1( } ), p(T ))0 =

=E� {|
T

t
( (1�\2) f1( } , :(s)), p(s)) 0, \ ds

+( (1�\2) g1( } ), p(T )) 0, \=
=E� {|

T

t
f ( p(s), :(s)) ds+ g( p(T ))= ,

where we set

f ( p, :)=|
Rd

f (!, :) p(!) d!=( f1( } , :), p) 0=� 1
\2 f1( } , :), p�0, \

,

(75)

g( p, :)=|
Rd

g1(!) p(!) d!=(g1( } ), p) 0=� 1
\2 g1( } ), p�0, \

.

Employing the setting of relaxed controls the ``separated'' problem (SP) we
consider is the following:

Minimize the functional J(t, p0 ; :) over all relaxed controls (0, F, P, Y1 , :)
# A� t, T , where A� t, T is defined as in Section 4.

To this problem we can apply the machinery developed in the paper. All
we need is another assumption on the cost functions.

Hypothesis 7.4. The functions

f1 : Rd_A [ R; g1 : Rd [ R

are continuous and (1�\) f1( } , :), (1�\) g1( } ) belong to L2(Rd) and have
uniformly bounded norms for : # A.

Under this assumption the following result holds whose proof is rather
straightforward in light of Remark 4.2.

Proposition 7.5. If Hypothesis 7.4 is satisfied then the functions

f: X0 _A [ R; g: X0 [ R

defined in (75) satisfy Hypothesis 4.1.

The above proposition allows us to apply the results of Sections 5 and
6 to our ``separated'' problem. The main result is:

42 GOZZI AND S� WIE� CH



File: DISTL1 356243 . By:GC . Date:02:03:00 . Time:13:39 LOP8M. V8.B. Page 01:01
Codes: 3042 Signs: 1954 . Length: 45 pic 0 pts, 190 mm

Theorem 7.6. Assume that Hypotheses 7.1 and 7.4 hold. Then the value
function

v(t, p0)= inf
: # A� t, T

J(t, p0 ; :)

of the control problem SP is the unique viscosity solution (in the class of
functions satisfying (44) and (45)) of the HJB equation

{vt+ inf
: # A { 1

2 :
m

k=1

(D2vS k
: p, S k

: p) 0, \&(A: p, Dv) (X&1, X1)+ f ( p, :)==0,

v(T, p)=g( p).

We observe that the main advantage of using weighted spaces in this
paper is the fact that, when the initial density is, say, polynomially decreas-
ing at infinity with the decay rate of order at least ;+d�2, ;>d�2 (which
does not look like a strong restriction, see Remark 7.3) we can then deal
with polynomially growing cost functions with the growth rate less than
;&d�2 (see the example below). This is not possible if we set simply \=1
and this fact has been the main reason for the introduction of weighted
norms here. In fact every weight \ satisfying Proposition 2.1 (like some
exponential weight) can be used in our setting.

Example 7.7. Let p0 be a gaussian density and let f1 and g1 have
polynomial growth in !, i.e.

| f1(!, :)|�C(1+|!| k1
Rd), | g1(!)|�C(1+|!| k2

Rd).

Our results can be applied to this problem if we choose the space L2
\(Rd)

for ;>[k1 6 k2]+d�2. In the classical quadratic case

f1(!, :)=(M!, !) Rd+(N:, :) Rn , g1(!)=(G!, !) Rd ,

where M, N and G are suitable nonnegative definite matrices, these condi-
tions are satisfied with k1=k2=2 if we choose A=BRn(0, R). Therefore in
this case it is enough to take L2

\(Rd) for ;>2+d�2. In particular, when
also the state equation is linear in the control : our framework covers e.g.
the cases studied in [2, Chapter 4].

Remark 7.8. With minor modifications we could also treat cases of
more general coefficients in the state equation, i.e. the non-autonomous
case, or the case of h depending on :, under suitable regularity assumptions.

Remark 7.9. Theorem 7.6 lays the groundwork for the future analysis
of the ``separated'' problem SP. One such thing is optimality conditions (a
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so called verification theorem) that are based on the HJB equation. We are
currently working on adapting the approach presented in [32] to our
infinite dimensional problem. A related question is the existence of optimal
feedback controls if the value function is more regular (see [17] for some
results on this). These problems will be investigated in a subsequent work.
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