\textit{K}_t \textit{ MINORS IN LARGE }\textit{t-CONNECTED GRAPHS}

Robin Thomas

School of Mathematics
Georgia Institute of Technology
http://math.gatech.edu/~thomas

joint work with Sergey Norin
K_t MINORS IN LARGE t-CONNECTED GRAPHS

Robin Thomas

School of Mathematics
Georgia Institute of Technology
http://math.gatech.edu/~thomas

joint work with Serguei Norine
• A minor of G is obtained by taking subgraphs and contracting edges.
• Preserves planarity and other properties.
• G has an H minor ($H \leq_m G$) if G has a minor isomorphic to H.
• A K_5 minor:
Excluding K_t minors

- $G \not\geq_m K_3 \iff G$ is a forest (tree-width ≤ 1)
- $G \not\geq_m K_4 \iff G$ is series-parallel (tree-width ≤ 2)
- $G \not\geq_m K_5 \iff$ tree-decomposition into planar graphs and V_8 (Wagner 1937)
- $G \not\geq_m K_6 \iff$???
Graphs with no K_6

• apex ($G \setminus v$ planar for some v)
Graphs with no K_6

- apex ($G \setminus v$ planar for some v)
- planar + triangle
Graphs with no K_6

- apex ($G\backslash v$ planar for some v)
- planar + triangle
- double-cross
Graphs with no K_6

- apex ($G \setminus v$ planar for some v)
- planar + triangle
- double-cross
Graphs with no K_6

- apex ($G \setminus v$ planar for some v)
- planar + triangle
- double-cross
- hose structure
Graphs with no K_6

- apex ($G \setminus v$ planar for some v)
- planar + triangle
- double-cross
- hose structure
GRAPHS WITH NO K_t MINOR

REMARK
$G \not \cong_m K_t \Rightarrow (G + \text{universal vertex}) \not \cong_m K_{t+1}$

REMARK
$G \setminus X$ planar for $X \subseteq V(G)$ of size $\leq t-5 \Rightarrow G \not \cong_m K_t$
THEOREM (Robertson & Seymour)
\[G \not\cong_m K_t \implies G \text{ has "structure"} \]

Roughly structure means tree-decomposition of pieces that \(k \)-almost embed in a surface that does not embed \(K_t \), where \(k = k(t) \).

Converse not true, but:
\[G \text{ has "structure"} \implies G \not\cong_m K_t \text{ for some } t' >> t \]

Our objective is to find a simple iff statement
Extremal results for K_t

• $G \not\supseteq K_3 \implies |E(G)| \leq n-1$
Extremal results for K_t

- $G \not\supseteq K_3 \Rightarrow |E(G)| \leq n - 1$
- $G \not\supseteq K_4 \Rightarrow |E(G)| \leq 2n - 3$
Extremal results for K_t

- $G \nsubseteq K_3 \Rightarrow |E(G)| \leq n-1$
- $G \nsubseteq K_4 \Rightarrow |E(G)| \leq 2n-3$
- $G \nsubseteq K_5 \Rightarrow |E(G)| \leq 3n-6$ (Wagner)
Extremal results for K_t

- $G \not\ni K_3 \Rightarrow |E(G)| \leq n-1$
- $G \not\ni K_4 \Rightarrow |E(G)| \leq 2n-3$
- $G \not\ni K_5 \Rightarrow |E(G)| \leq 3n-6$ (Wagner)
- $G \not\ni K_6 \Rightarrow |E(G)| \leq 4n-10$ (Mader)
Extremal results for K_t

- $G \not\supseteq K_3 \Rightarrow |E(G)| \leq n-1$
- $G \not\supseteq K_4 \Rightarrow |E(G)| \leq 2n-3$
- $G \not\supseteq K_5 \Rightarrow |E(G)| \leq 3n-6$ (Wagner)
- $G \not\supseteq K_6 \Rightarrow |E(G)| \leq 4n-10$ (Mader)
- $G \not\supseteq K_7 \Rightarrow |E(G)| \leq 5n-15$ (Mader)
Extremal results for K_t

- $G \not\ni K_3 \Rightarrow |E(G)| \leq n-1$
- $G \not\ni K_4 \Rightarrow |E(G)| \leq 2n-3$
- $G \not\ni K_5 \Rightarrow |E(G)| \leq 3n-6$ (Wagner)
- $G \not\ni K_6 \Rightarrow |E(G)| \leq 4n-10$ (Mader)
- $G \not\ni K_7 \Rightarrow |E(G)| \leq 5n-15$ (Mader)

So

- $G \not\ni K_t \Rightarrow |E(G)| \leq (t-2)n-(t-1)(t-2)/2$ for $t \leq 7$
Extremal results for K_t

- $G \nsubseteq K_t \Rightarrow |E(G)| \leq (t-2)n-(t-1)(t-2)/2$ for $t \leq 7$
- $G \nsubseteq K_8 \Rightarrow |E(G)| \leq 6n-21$, because of $K_{2,2,2,2,2}$
- $G \nsubseteq K_t \Rightarrow |E(G)| \leq ct(\log t)^{1/2}n$ (Kostochka, Thomason)

CONJ (Seymour, RT)
$G \nsubseteq K_t \Rightarrow |E(G)| \leq (t-2)n-(t-1)(t-2)/2$
Extremal results for K_t

- $G \not
\cong K_t \Rightarrow |E(G)| \leq (t-2)n-(t-1)(t-2)/2$ for $t \leq 7$
- $G \not
\cong K_8 \not\Rightarrow |E(G)| \leq 6n-21$, because of $K_{2,2,2,2,2}$
- $G \not
\cong K_t \Rightarrow |E(G)| \leq ct(\log t)^{1/2}n$ (Kostochka, Thomason)

CONJ (Seymour, RT) G is $(t-2)$-connected, big $G \not
\cong K_t \Rightarrow |E(G)| \leq (t-2)n-(t-1)(t-2)/2$

- $G \not
\cong K_8 \Rightarrow |E(G)| \leq 6n-21$, unless G is a $(K_{2,2,2,2,2,5})$-cockade (Jorgensen)
- $G \not
\cong K_9 \Rightarrow |E(G)| \leq 7n-28$, unless…. (Song, RT)
K_t minors naturally appear in:

Structure theorems:
- series-parallel graphs (Dirac)
- characterization of planarity (Kuratowski)
- linkless embeddings (Robertson, Seymour, RT)
- knotless embeddings (unproven)

Hadwiger’s conjecture: $K_t \not\subseteq_m G \Rightarrow \chi(G) \leq t-1$
Hadwiger’s conjecture: $K_{t \not\subseteq_m} G \Rightarrow \chi(G) \leq t-1$
Hadwiger’s conjecture: $K_t \not\leq m G \Rightarrow \chi(G) \leq t-1$

- Easy for $t \leq 4$, but for $t \geq 5$ implies 4CT.
Hadwiger’s conjecture: $K_t \not\subseteq m G \Rightarrow \chi(G) \leq t-1$

- Easy for $t \leq 4$, but for $t \geq 5$ implies 4CT.
- For $t=5$ implied by the 4CT by Wagner’s structure theorem (1937)
Hadwiger’s conjecture: $K_t \nsubseteq_m G \implies \chi(G) \leq t-1$

- Easy for $t \leq 4$, but for $t \geq 5$ implies 4CT.
- For $t=5$ implied by the 4CT by Wagner’s structure theorem (1937)
- For $t=6$ implied by the 4CT by THM (Robertson, Seymour, RT) Every minimal counterexample to Hadwiger for $t=6$ is apex ($G \setminus v$ is planar for some v)
Hadwiger’s conjecture: \(K_t \not\cong G \Rightarrow \chi(G) \leq t-1 \)

- Easy for \(t \leq 4 \), but for \(t \geq 5 \) implies 4CT.
- For \(t=5 \) implied by the 4CT by Wagner’s structure theorem (1937)
- For \(t=6 \) implied by the 4CT by

THM (Robertson, Seymour, RT) Every minimal counterexample to Hadwiger for \(t=6 \) is apex (\(G\setminus v \) is planar for some \(v \))

Hadwiger’s conjecture is open for \(t>6 \)

Open even for \(G \) with no 3 pairwise non-adjacent vertices; **HC** implies any such \(G \geq_m K_{[n/2]} \)
Hadwiger’s conjecture: \(K_t \not\leq_m G \Rightarrow \chi(G) \leq t-1 \)

- Easy for \(t \leq 4 \), but for \(t \geq 5 \) implies 4CT.
- For \(t=5 \) implied by the 4CT by Wagner’s structure theorem (1937)
- For \(t=6 \) implied by the 4CT by THM (Robertson, Seymour, RT) Every minimal counterexample to Hadwiger for \(t=6 \) is apex (\(G\setminus \nu \) is planar for some \(\nu \))
Hadwiger’s conjecture: $K_{t \not\subseteq m} G \Rightarrow \chi(G) \leq t-1$

- Easy for $t \leq 4$, but for $t \geq 5$ implies 4CT.
- For $t=5$ implied by the 4CT by Wagner’s structure theorem (1937)
- For $t=6$ implied by the 4CT by THM (Robertson, Seymour, RT) Every minimal counterexample to Hadwiger for $t=6$ is apex ($G\setminus v$ is planar for some v)

Theorem implied by

Jorgensen’s conjecture: If G is 6-connected and $K_{6 \not\subseteq m} G$, then G is apex.
Jorgensen’s conjecture: If G is 6-connected and $K_6 \not\prec_m G$, then G is apex.
Jorgensen’s conjecture: If G is 6-connected and $K_6 \not\subseteq_m G$, then G is apex.

THM (DeVos, Hegde, Kawarabayashi, Norin, RT, Wollan) True for big graphs: There exists N such that every 6-connected graph $G \not\subseteq_m K_6$ on $\geq N$ vertices is apex.

MAIN THM (with Norin) $\forall t \exists N_t$ $\forall t$-connected graph $G \not\subseteq_m K_t$ on $\geq N_t$ vertices $\exists X \subseteq V(G)$ with $|X| \leq t-5$ such that $G \setminus X$ is planar.
Jorgensen’s conjecture: If G is 6-connected and $K_6 \not\subseteq_m G$, then G is apex.

THM (DeVos, Hegde, Kawarabayashi, Norin, RT, Wollan)
True for big graphs:
There exists N such that every 6-connected graph $G \not\supseteq_m K_6$ on $\geq N$ vertices is apex.

MAIN THM (with Norin) $\forall t \exists N_t \forall t$-connected graph $G \not\supseteq_m K_t$ on $\geq N_t$ vertices $\exists X \subseteq V(G)$ with $|X| \leq t-5$ such that $G \setminus X$ is planar.
MAIN THM (with Norin) \(\forall t \exists N_t \forall t \)-connected graph \(G \not
subseteq_m K_t \) on \(\geq N_t \) vertices \(\exists X \subseteq V(G) \) with \(|X| \leq t-5 \) such that \(G \setminus X \) is planar.

NOTES

• Gives iff characterization
• \(t \)-connected and \(|X| \leq t-5 \) best possible
• \(N_t \) needed for \(t>7 \)
• Proved for \(31t/2 \)-connected graphs by Kawarabayashi, Maharry, Mohar
MAIN THM (with Norin) \(\forall \ t \ \exists \ N_t \forall \ t \)-connected graph \(\exists_m K_t \) on \(\geq N_t \) vertices \(\exists \ X \subseteq V(G) \) with \(|X| \leq t-5 \) such that \(G \setminus X \) is planar.

INGREDIENTS IN THE PROOF

- “Brambles” (“tangles”)
- Thm of DeVos-Seymour on graphs in a disk
- No big bramble \(\Rightarrow \) bounded tree-width method
- Excluded \(K_t \) theorem of Robertson & Seymour to examine the structure of a big bramble
THM (DeVos, Seymour) If G is drawn in a disk with at most k vertices on the boundary and every interior vertex has degree ≥ 6, then G has $\leq f(k)$ vertices.
THM (DeVos, Seymour) If G is drawn in a disk with at most k vertices on the boundary and every interior vertex has degree ≥ 6, then G has $\leq f(k)$ vertices.
THM (DeVos, Seymour) If G is drawn in a disk with at most k vertices on the boundary and every interior vertex has degree ≥ 6, then G has $\leq f(k)$ vertices.
DEF A bramble \mathcal{B} in G is a set of connected subgraphs that pairwise touch (intersect or are joined by an edge). The order of \mathcal{B} is $\min\{|X| : X \cap B \neq \emptyset \text{ for every } B \in \mathcal{B}\}$.

EXAMPLE $G=kk$ grid, $\mathcal{B}=\{\text{all crosses}\}$, order is k
DEF A bramble \mathcal{B} in G is a set of connected subgraphs that pairwise touch (intersect or are joined by an edge). The order of \mathcal{B} is $\min\{|X| : X \cap B \neq \emptyset \text{ for every } B \in \mathcal{B}\}$.

EXAMPLE $G = k \times k$ grid, $\mathcal{B} = \{\text{all crosses}\}$, order is k
DEF A bramble \mathcal{B} in G is a set of connected subgraphs that pairwise touch (intersect or are joined by an edge). The order of \mathcal{B} is $\min\{|X| : X \cap B \neq \emptyset \text{ for every } B \in \mathcal{B}\}$.

THEOREM (Seymour, RT) tree-width$(G) = \max$ order of a bramble $+ 1$

THEOREM (Robertson, Seymour) All brambles in G form a tree-decomposition.
CASE 1 G has bounded tree-width

PROOF Let (T, W) be a tree-decomposition of bounded width. T has a vertex of big degree or a long path.
CASE 1 \(G \) has bounded tree-width

PROOF Let \((T, W) \) be a tree-decomposition of bounded width. \(T \) has a vertex of big degree or a long path.
CASE 1 \(G \) has bounded tree-width

PROOF Let \((T,W)\) be a tree-decomposition of bounded width. \(T \) has a vertex of big degree or a long path.
CASE 1 G has bounded tree-width

PROOF Let \((T,W)\) be a tree-decomposition of bounded width. \(T\) has a vertex of big degree or a long path.
CASE 1 \(G \) has bounded tree-width

PROOF Let \((T,W)\) be a tree-decomposition of bounded width. \(T \) has a vertex of big degree or a long path.
CASE 1 G has bounded tree-width

PROOF Let (T,W) be a tree-decomposition of bounded width. T has a vertex of big degree or a long path.
CASE 1 G has bounded tree-width

PROOF Let \((T,W)\) be a tree-decomposition of bounded width. \(T\) has a vertex of big degree or a long path.
CASE 1 G has bounded tree-width

PROOF Let \((T,W)\) be a tree-decomposition of bounded width. \(T\) has a vertex of big degree or a long path.
CASE 1 G has bounded tree-width

PROOF Let $\langle T, W \rangle$ be a tree-decomposition of bounded width. T has a vertex of big degree or a long path.
CASE 1 \(G \) has bounded tree-width

PROOF Let \((T, W)\) be a tree-decomposition of bounded width. \(T \) has a vertex of big degree or a long path.
CASE 1 G has bounded tree-width

PROOF Let \((T, W)\) be a tree-decomposition of bounded width. \(T\) has a vertex of big degree or a long path.
CASE 1 G has bounded tree-width

PROOF Let \((T,W)\) be a tree-decomposition of bounded width. \(T\) has a vertex of big degree or a long path. This suffices to get a \(K_7\) minor. For bigger cliques we need a more sophisticated argument.
CASE 2 There is a bramble B of large order

By the excluded K_t theorem of Robertson and Seymour we reduce to the same problem as above.
SUMMARY

MAIN THM (with Norin) $\forall t \exists N_t \forall t$-connected graph $G \not\ni_m K_t$ on $\geq N_t$ vertices $\exists X \subseteq V(G)$ with $|X| \leq t-5$ such that $G \setminus X$ is planar.

COR G is t-connected, $\geq N_t$ vertices, $G \not\ni_m K_t \Rightarrow |E(G)| \leq (t-2)n-(t-1)(t-2)/2$

CONJ Corollary holds for $(t-2)$-connected graphs