3 - Induction and Recursion

William T. Trotter
trotter@math.gatech.edu
Using Recurrence Equations (1)

Basic Problem How many regions are determined by \(n \) lines that intersect in general position?

Answer
\[d_1 = 2 \]
\[d_{n+1} = d_n + n+1 \text{ when } n \geq 0. \]

So
\[d_2 = 2 + (1+1) = 4 \]
\[d_3 = 4 + (2+1) = 7 \]
\[d_4 = 7 + (3+1) = 11 \]

What are \(d_5 \) and \(d_6 \)?
Basic Problem How many regions are determined by n circles that intersect in general position?

Answer

$d_1 = 2$

$d_{n+1} = d_n + 2n$ when $n \geq 0$.

So

$d_2 = 2 + 2*1 = 4$

$d_3 = 4 + 2*2 = 8$

$d_4 = 8 + 2*3 = 14$

What are d_5 and d_6?
Basic Problem How many ways to tile a \(2 \times n \) grid with dominoes of size \(1 \times 2 \) and \(2 \times 1 \)?

Answer
\[
d_1 = 1 \\
d_2 = 2 \\
d_{n+2} = d_{n+1} + d_n 	ext{ when } n \geq 0.
\]

So \(d_3 = 2 + 1 = 3 \)
\(d_4 = 3 + 2 = 5 \)

What are \(d_5 \) and \(d_6 \)?
Basic Problem How many ways to tile a $3 \times n$ grid with tiles of the four shapes illustrated here?

Partial Answer

\[d_1 = 1 \]
\[d_2 = 2 \]
\[d_3 = 4 \]

What are d_5 and d_6?

Cash Prize One dollar to first person who can correctly evaluate d_{20}.
Basic Problem How ternary sequences do not contain 01 in consecutive positions?

Answer
\[t_1 = 3 \]
\[t_2 = 8 \]
\[t_n = 3t_{n-1} - t_{n-2} \text{ when } n \geq 2. \]

So \[t_3 = 3 \times 8 - 3 = 21 \]
\[t_4 = 3 \times 21 - 8 = 55 \]

What is \[t_5? \]
Question: If you know that:

\[a_1 = 14 \]
\[a_2 = 23 \]
\[a_3 = -96 \]
\[a_4 = 52 \]

and

\[a_{n+4} = 9a_{n+3} - 7a_{n+2} + 8a_{n+1} + 13a_n \] when \(n \geq 1 \), then you can calculate \(a_n \) for any positive integer \(n \). Is this good enough, or would you like to know even more about \(a_n \)?
The Principle of Math Induction

Postulate If \(S \) is a set of positive integers, 1 is in \(S \), and \(k + 1 \) is in \(S \) whenever \(k \) is in \(S \), then \(S \) is the set of all positive integers.

Consequence To prove that a statement \(S_n \) is true for all \(n \), it suffices to do the following two tasks. First show that \(S_n \) holds when \(n = 1 \). Second, assume that \(S_n \) is true when \(n = k \) and show that it then holds when \(n = k + 1 \).
int my_function (int a) {
 if (a == 1) {
 return 42; /* The Secret */
 } else return 3*my_function (a -1) - 80;
}

What is the value of:

my_function (3)

Answer 58
A More Challenging Example

```c
int update_value(int a) {
    if (a % 2 == 0) {  /* a % 2 = a mod 2 */
        return a/2;
    } else return 3*a + 1;
}

int collatz_sequence(int a) {
    printf("%d \n", a);
    do while (a != 1) {a = update (a);}
    printf("Success!\n");
}
```
Applying Math Induction (1)

Theorem The sum of the first n odd integers is n^2, i.e.,
$$1 + 3 + 5 + 7 + \ldots + (2n - 1) = n^2.$$

Proof $2 \times 1 - 1 = 1^2 = 1$, so true when $n = 1$.
Assume true when $n = k$, i.e., assume
$$1 + 3 + 5 + 7 + \ldots + (2k - 1) = k^2.$$

Then
$$1 + 3 + 5 + 7 + \ldots + (2k - 1) + (2k + 1) = k^2 + (2k + 1)$$
$$= k^2 + 2k + 1$$
$$= (k +1)^2$$

QED
Theorem The sum of the first n odd integers is n^2, i.e.,

$$1 + 3 + 5 + 7 + \ldots + (2n - 1) = n^2.$$

But ... can we really be certain about what is meant with the expression of the left hand side? Let’s take out the ambiguity. In the English language, we might say “the sum of the first n odd integers is n^2.”

Here’s an even more precise way. First, for a sequence $\{a_n: \ n \geq 1\}$, we define:

$$\sum_{i=1}^{1} a_i = a_1 \quad \text{and} \quad \sum_{i=1}^{k+1} a_i = a_{k+1} + \sum_{i=1}^{k} a_i$$
Avoiding Ambiguity (2)

Theorem \[\sum_{i=1}^{n} 2i - 1 = n^2 \]

Proof \[\sum_{i=1}^{1} 2i - 1 = 2(1) - 1 = 1 = 1^2 \]

Now assume \[\sum_{i=1}^{k} 2i - 1 = k^2 \]

Then \[\sum_{i=1}^{k+1} 2i - 1 = k^2 + [2(k + 1) - 1] \]
\[= k^2 + 2k + 1 \]
\[= (k + 1)^2 \]

QED
Theory vs. Practice

Remark In practice most mathematicians, computer scientists and engineers prefer the informal notation as they feel it is more intuitive. However, whenever truly pressed, they could if absolutely forced, go the more formal and absolutely unambiguous route.

Also A combinatorial proof is usually preferable to a formal inductive proof ... as this helps us to understand what is really going on behind the scenes.

Remember Usually means usually and not always.
Applying Math Induction (2)

Exercise Show that the following formula is valid:
\[1^2 + 2^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}.\]

Proof
1\(^2 = 1 = 1(1+1)(2*1+1)/6, so true when \ n = 1.\)
Assume true when \ n = k, i.e., assume
\[1^2 + 2^2 + \ldots + k^2 = \frac{k(k+1)(2k+1)}{6}.\]

Then
\[1^2 + 2^2 + \ldots + k^2 + (k+1)^2 = \frac{k(k+1)(2k+1)}{6} + (k+1)^2\]
\[= \left[(2k^3 + 3k^2 +k)+(6k^2+12k+6)\right]/6\]
\[= (2k^3 + 9k^2 + 13k + 6)/6\]
\[= \frac{(k +1)(k + 2)(2k + 3)}{6}\]

QED
Applying Math Induction (3)

Theorem For all \(n \geq 1 \), \(n^3 + (n + 1)^3 + (n + 2)^3 \) is divisible by 9.

Proof When \(n = 1 \), \(1^3 + 2^3 + 3^3 = 1 + 8 + 25 = 36 \).

Assume true when \(n = k \). Then, if \(n = k + 1 \),

\[
(k+1)^3 + (k+2)^3 + (k+3)^3 \\
= (k+3)^3 + (k+1)^3 + (k+2)^3 \\
= (k^3 + 9k^2 + 27k + 27) + (k+1)^3 + (k+2)^3 \\
= [(k^3 + (k+1)^3 + (k+2)^3)] + [9k^2 + 27k + 27]
\]

QED
An Exercise in Math Induction (1)

Exercise Show that for all \(n \geq 2 \),

\[
\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \ldots + \frac{1}{\sqrt{n}} > \sqrt{n}
\]

Solution (Which turned out to be more substantive than our other examples presented thus far.)

The base case is \(n = 2 \). Here the left hand is \(1 + \frac{1}{\sqrt{2}} \) while the right hand side is \(\sqrt{2} \), so we want to show that \(1 + \frac{1}{\sqrt{2}} > \sqrt{2} \).
Exercise (continued) Squaring both sides, this is equivalent to showing that

\[
1 + 2/\sqrt{2} + 1/2 > 2 \quad \text{and this is equivalent to} \quad \sqrt{2} > 1/2 \quad \text{which is true since } \sqrt{2} > 1.
\]

So we have established that the inequality is valid when \(n = 2 \). Now assume that it is valid for some integer \(k \), i.e.,

\[
1/\sqrt{1} + 1/\sqrt{2} + 1/\sqrt{3} + ... + 1/\sqrt{k} > \sqrt{k}
\]
Exercise (continued) It follows that

\[\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \ldots + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}} > \sqrt{k} + \frac{1}{\sqrt{k+1}}. \]

Now what we want to prove is that

\[\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \ldots + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}} > \sqrt{k+1}, \]

so it suffices to prove that

\[\sqrt{k} + \frac{1}{\sqrt{k+1}} > \sqrt{k+1} \]
Exercise (continued) Squaring both sides, the last inequality is equivalent to

\[k + 2 \sqrt{\frac{k}{k+1}} + \frac{1}{k+1} > k + 1, \text{ which is equivalent to } \]

\[2 \sqrt{\frac{k}{k+1}} + \frac{1}{k+1} > 1. \text{ But this inequality holds if } \]

\[2 \sqrt{\frac{k}{k+1}} > 1, \text{ which is not equivalent to } \]

\[4k > k+1, \text{ which is true. } \]

QED (Whew!)
Exercise

Show that $n^2 > 5n + 13$ when $n \geq 7$.

Attempt at Solution

Base Case: $7^2 = 49 > 5 \cdot 7 + 13 = 48$. This works!

Inductive Step

Assume $k^2 > 5k + 13$ for some $k \geq 7$.

Then $(k + 1)^2 = k^2 + 2k + 1$

$> (5k + 13) + (2k + 1)$

$= (5k + 5) + (2k + 9)$

But I need to show that

$(k + 1)^2 > 5(k + 1) + 13 = (5k + 5) + 13$

So I need $2k + 9 \geq 13$. Is this true?
Exercise If \(n \geq 2 \), then \(2n + 9 \geq 13 \)

Proof If \(n \geq 2 \), then \(2n \geq 4 \), so that \(2n + 9 \geq 4 + 9 = 13 \).

Exercise Show that \(n^2 > 5n + 13 \) when \(n \geq 7 \).

Base Case \(7^2 = 49 > 5 \cdot 7 + 13 = 48 \). Check!

Inductive Step Assume \(k^2 > 5k + 13 \) for some \(k \geq 7 \). Then

\[
(k + 1)^2 = k^2 + 2k + 1 \\
> (5k + 13) + (2k + 1) \\
= (5k + 5) + (2k + 9) \\
\geq 5(k + 1) + 13 \quad \text{QED}
\]
Alternative Forms of Induction

Strategy 1 To argue by contradiction, if a statement S_n is not true for all $n \geq 1$, there is a least positive integer for which it fails.

Strategy 2 To prove that a statement S_n holds for all $n \geq 1$, it is enough to do the following two steps:

Base Step Verify that the statement S_1 is valid.

Strong Inductive Step Assume that for some $k \geq 1$, the statement S_m is valid for all m with $1 \leq m \leq k$. Then show that statement S_{k+1} is valid.
Basis for Long Division

Theorem If \(m \) and \(n \) are positive integers, there are unique integers \(q \) and \(r \) with \(q \geq 0 \) and \(0 \leq r < m \) so that

\[
n = q \cdot m + r
\]

Question Is this obvious or does it require an explanation/proof?

Yes!! It does require an argument.
Strategy Make the following statement S_n: For all positive integers m, there exist q and r with $q \geq 0$ and $0 \leq r < m$ so that $n = q \cdot m + r$.

Proof When $n = 1$, if $m = 1$, then $1 = 1 \cdot 1 + 0$, and if $m > 1$, then $1 = 0 \cdot m + 1$. So S_1 is true. Now assume S_k is true, and let m be a positive integer. Choose q and r so that $k = q \cdot m + r$. Then $k + 1 = q \cdot m + (r + 1)$ works unless $r + 1 = m$. In this case, $k + 1 = (q + 1) \cdot m + 0$.

The uniqueness part is just high school algebra.
Finding Greatest Common Divisors

Problem If \(n \) and \(m \) are positive integers with \(n \geq m \), find their greatest common divisor.

Solution The following loop always works.

```c
int gcd (int n, int m) {
    int gotit = 0;
    int answer = m;
    while (gotit == 0) do {
        if (n % answer == 0) return answer;
        gotit = 1;
        answer = answer - 1;
    }
}
```
Remark There is no computer on the planet that will solve the following problem using the algorithm on the preceding slide:

\[\gcd(275887499882303013399012285973582, 3747754982288837599088247) \]

Comment Maple reported that they are relatively prime in less than one second.
The Euclidean Algorithm

Setup Suppose n and m are positive integers with $n \geq m$. Choose q and r with $q \geq 0$ and $0 \leq r < m$ so that $n = qm + r$.

Fact If $r = 0$, then $\gcd(n, m) = m$.

Fact If $r > 0$, then $\gcd(n, m) = \gcd(m, r)$.

Explanation $n/d = (qm + r)/d = q (m/d) + r/d$.
An Improved Algorithm

```c
int gcd (int n, int m) {
    int gotit = 0;
    while (gotit == 0) do {
        r = n % m; /* r = n mod m */
        if (r == 0) return m;
        gotit = 1;
        else n = m;
            m = r;
    }
}
```
Concrete Example

Problem Find $\gcd(10262736, 85470)$.

\[
\begin{align*}
10262736 \mod 85470 &= 6336 \\
85470 \mod 6336 &= 3102 \\
6336 \mod 3102 &= 132 \\
3102 \mod 132 &= 66 \\
132 \mod 66 &= 0
\end{align*}
\]

Answer $66 = \gcd(10262736, 85470)$
Quotients and Remainders

Problem Find \(\text{gcd} (n, m) \) when \(n = 10262736 \) and \(m = 85470 \).

\[
\begin{align*}
10262736 &= 120 \times 85470 + 6336 \\
85470 &= 13 \times 6336 + 3102 \\
6336 &= 2 \times 3102 + 132 \\
3102 &= 23 \times 132 + 66 \\
132 &= 2 \times 66 + 0
\end{align*}
\]

\[
\begin{align*}
6336 &= 10262736 - 120 \times 85470 \\
3102 &= 85470 - 13 \times 6336 \\
132 &= 6336 - 2 \times 3102 \\
66 &= 3102 - 23 \times 132
\end{align*}
\]

Problem Use back-tracking to find integers \(a \) and \(b \) so that \(an + bm = \text{gcd} (n, m) \).
Fact When n and m are positive integers, there are integers a and b so that

$$\gcd(n, m) = an + bm$$

Fact We can find a and b by back-tracking with the information gained in carrying out the Euclidean algorithm.
Back Tracking Details

Problem Find a and b so that $\gcd(n, m) = an + bm$ when $n = 10262736$ and $m = 85470$

\[
66 = 3102 - 23 \times 132 \quad \text{and} \quad 132 = 6336 - 2 \times 3102
\]
\[
= -23 \times 6336 + 47 \times 3102 \quad \text{and} \quad 3102 = 85470 - 13 \times 6336
\]
\[
= 47 \times 85470 - 634 \times 6336 \quad \text{and} \quad 6336 = 10262736 - 120 \times 85470
\]
\[
= -634 \times 10262736 + 76127 \times 85470
\]

Solution $a = -634$ and $b = 76127$
Preferring Loops

Recommendation

Check out the program `gcd_lcm.c` on the course website and see how to compute gcd’s and solve the Diophantine equation \(an + bm = \gcd(n, m) \) using a loop with no backtracking and very little memory.