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Abstract. Over the past 10 years, there has been considerable interest in exploring questions
connecting dimension for posets with graph theoretic properties of their cover graphs and
order diagrams, especially with the concepts of planarity and treewidth. Joret and Micek
conjectured that if P is a poset with a planar cover graph, then the dimension of P is bounded
in terms of the number of minimal elements of P and the treewidth of the cover graph of P .
We settle this conjecture in the affirmative by strengthening a recent breakthrough result [14]
by Blake, Micek, and Trotter, who proved that for each poset P admitting a planar cover
graph and a unique minimal element we have dim(P ) 6 2 se(P ) + 2, namely, we prove that
dim(P ) 6 2wheel(P ) + 2.

1. Introduction

We will assume that readers are familiar with basic concepts for posets including: subposets;
chains and antichains; height and width; maximal and minimal elements, comparable and
incomparable pairs of points; cover graphs and order diagrams; linear extensions; realizers;
and dimension as defined by Dushnik and Miller [2]. We will also assume that readers are
familiar with basic concepts for graphs including: planarity; chromatic number; path-width;
and treewidth. For readers who seek additional background on posets and dimension, we
recommend the recent papers [14], [13] and the survey chapter [21]. All the graph theoretic
material we use here can be found in any advanced undergraduate text on this subject.

Our primary goal in this paper is to resolve in the affirmative the following conjecture of Joret
and Micek.

Conjecture 1. Among the class of posets with planar cover graphs, dimension is bounded in
terms of the number of minimal elements and the treewidth of the cover graph.

We will actually prove stronger results, and then obtain the proof of Conjecture 1 as an
immediate consequence. The remainder of this introductory section contains material necessary
to motivate and state our three main theorems. In Section 2, we develop some more detailed
background. The proofs of our three main theorems are given in Section 3. We close in
Section 4 with some remarks on open problems that remain.
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2 J. HODOR AND W. T. TROTTER

When P is a poset, the dimension of P is denoted dim(P ). We will sometimes abbreviate the
statement a 6 b in P as a 6P b. Also, when a and b are incomparable elements of P , we write
a ‖ b in P , abbreviated as a ‖P b. When P and Q are posets, we will say that P contains Q if
there is a subposet of P that is isomorphic to Q. Dimension is monotonic, so dim(P ) > dim(Q)
whenever P contains Q. We will use the abbreviation [n] for the set {1, . . . , n} of the least n
positive integers.

When P is a poset, the cover graph G of P is an undirected graph, and there can be many
different posets havingG as their cover graph. Such posets can have different height, width, and
dimension. Constructing examples illustrating the first two is straightforward, for dimension
see e.g. [23, Fig. 5]. However, in this paper, we always start with a poset P , and P now imposes
an orientation on G: An edge e = xy in G is oriented from x to y when y covers x in P . Also,
we will say that e leaves x and enters y. With this convention, we can specify a poset with a
drawing of its oriented cover graph, and this method will be used extensively in the balance of
the paper.

A poset is planar if its order diagram can be drawn without edge crossings in the plane. We
say that a poset is cover-planar if its cover graph is planar. A planar poset is also cover-planar,
but there are cover-planar posets that are not planar. An infinite family of such posets will be
discussed later in this section.

Generally, in the past 15 years alone, more than 25 published research papers have explored
connections between dimension and graph theoretic properties of cover graphs and order di-
agrams (we list some of them: outerplanarity [3, 5], planarity [18, 13, 1, 10], cut-vertices
structure [22], treewidth [17, 9], exclusion of some structures [25, 15, 6, 7], or even more com-
plex structural parameters [11, 8]). For our considerations, it is worth mentioning a result in
[9]. Joret et. al. proved that among cover-planar posets the dimension is bounded by a function
of their height and treewidth. Note a similarity to our result – we replace the height with the
number of minimal elements.

However, to state our results, first, we have to explore the following well-known statement:
The dimension of (cover-)planar posets is not bounded. In order to discuss this in detail, we
introduce the family of standard examples. That is, for each d > 2 the standard example of
order d, sometimes denoted by Sd, is a height 2 poset with minimal elements {a1, . . . , ad} and
maximal elements {b1, . . . , bd}. The order relation is ai < bj in Sd when i, j ∈ [d] and i 6= j.
As noted in [2], dim(Sd) = d for all d > 2. We show an order diagram of the standard example
S6 in part A of Figure 1. Note that Sd is planar when d 6 4. However, when d > 5, even the
cover graph of Sd is not planar.

In [19], a family of cover-planar posets with unbounded dimension is constructed, namely, for
each d > 3 there is a cover-planar poset Hd such that dim(Hd) = d. In several recent papers,
Hd is called the wheel of order d. We define the wheels1 formally in the next section, see a
plane drawing of an oriented cover graph for the wheel H6 in part B of Figure 1. The poset
Hd contains the standard example Sd, so dim(Hd) > d. It is an easy exercise to show that
dim(Hd) = d. Moreover, the cover graph H2n+1 contains an n × n grid as a subgraph, and
so it has treewidth at least n. Note that each wheel has a unique minimal element. Finally,
for each d > 4, the wheel Hd is not a planar poset. This follows from the fact proved in [24]
stating that a planar poset with a unique minimal element has dimension bounded by 3.

1We elect to include the unique minimal element but not the unique maximal element in our definition of a
wheel.
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Figure 1.
A. The order diagram of the standard example S6.
B. The oriented cover graph of the wheelH6, a cover-planar poset with a unique
minimal element. The gray element is a unique minimal element, all edges are
directed “inside” the wheel as the gray arrows indicate. Red and blue elements
form the standard example S6. Red, blue, and black elements form the Kelly
poset K6.
C. The order diagram of the Kelly poset K6. One may find the Kelly poset in
literature in forms that vary a little from the one that we present. Usually, this
is only due to aesthetic reasons.

In [12], a family of planar posets with unbounded dimension is constructed, namely, for each
d > 3 there is a planar poset Kd such that dim(Kd) = d. The poset Kd is usually called the
Kelly poset of order d. We show a plane drawing of an order diagram for the Kelly poset K6 in
part C of Figure 1. The poset Kd contains the standard example Sd, so dim(Kd) > d. Again,
it is an easy exercise to show that dim(Kd) = d. For each d > 3 the wheel of order d contains
the Kelly poset of order d, however, the two construction differ a lot in terms of properties.
The cover graph of any Kelly poset has pathwidth (and so treewidth) bounded by 3 – see
e.g. [9]. Moreover, Kelly posets of large order have many minimal elements.

For convenience, we introduce the following parameters measuring complexity of posets. For a
poset P , the standard example number of P , denoted se(P ), is set to be 1 if P does not contain
the standard example S2; otherwise, se(P ) is the maximum order of a standard example
contained in P . The wheel number (or Kelly number respectively) denoted by wheel(P ) (or
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kelly(P )) of a poset P is equal to se(P ) if there is no wheel (or no Kelly poset) contained in P ;
otherwise, it is equal to the maximum order of a wheel (or a Kelly poset) contained in P . Note
that the standard example number is a classical notion, whereas the two latter parameters are
much less studied. Combining some of the observations stated up to this point, for each poset
P we have wheel(P ) 6 kelly(P ) 6 se(P ) 6 dim(P ).

The last inequality can be far from tight. The family of posets that do not contain the standard
example S2 as a subposet is a well-studied class of posets called interval orders. Posets in this
class can have arbitrarily large dimension [4]. Clearly, it is an interesting property of a family
of posets when the dimension and the standard example number are functionally bonded. We
say that a class P of posets is dim-bounded if there is a function f such that dim(P ) 6 f(se(P ))
for every P ∈ P. This reflects the notion of χ-boundedness in graph theory, we refer readers
to the recent survey by Scott and Seymour [16] on the extensive body of research done on this
topic.

We discussed the fact that the dimension of (cover-)planar posets is not bounded, thus it is
natural to ask for dim-boundedness. The roots of the following conjecture can be traced back
more than 40 years, although the first reference in print is in the form of an informal comment
on page 119 in [20] published in 1992.

Conjecture 2. The class of cover-planar posets is dim-bounded.

Recently, Blake, Micek, and Trotter resolved this conjecture for cover-planar posets with a
unique minimal element by proving the following theorem.

Theorem 3. [14] If P is a cover planar poset, and P has a unique minimal element, then

dim(P ) 6 2 se(P ) + 2.

The following more general result is an immediate corollary.

Corollary 4. If P is a cover planar poset, and P has m minimal elements, then

dim(P ) 6 m(2 se(P ) + 2).

Conjecture 1 was made soon after the results of [14] were announced. We can now state our
three main theorems.

Theorem 5. Let P be a cover-planar poset with a unique minimal element. Then

dim(P ) 6 2 wheel(P ) + 2.

Theorem 6. Let P be a cover-planar poset with a unique minimal element. If n > 2, and
dim(P ) is at least 4n+ 3, then the cover graph G of P contains an n× n grid as a minor. In
particular, dim(P ) 6 4tw(G) + 6

Theorem 7. Let P be a cover-planar poset. If P has m minimal elements and G is the cover
graph of P , then

dim(P ) 6 m(4tw(G) + 6).

Theorem 7 is almost a straightforward corollary of Theorem 6. This is due to the fact that the
treewidth of the n× n grid is n and the following easy observation.
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Observation 8. [23, Proposition 3.2] Let P be a poset and x ∈ P . Let U be the upset of x
in P , that is, U = {y ∈ P : x 6P y}. If L is a linear extension of the poset induced on U in P ,
then there exists a linear extension L′ of P such that

• for all y1, y2 ∈ U if y1 6 y2 in L, then y1 6 y2 in L′, and
• for all z ∈ P − U and y ∈ U we have z < y in L′.

Let us make a brief note on the relation between the dimension and the number of minimal
elements in the case, where a poset has a planar diagram. As already mentioned, in [24] it
is proved that for a planar poset P with a unique minimal element, we have dim(P ) 6 3.
This result combined with Observation 8 gives that for every planar poset P with m minimal
elements we have dim(P ) 6 3m. In [23] the inequality is strengthened to dim(P ) 6 2m+ 1. It
is not known, whether this is tight. The best known lower bound appeared in the same paper.
For each m > 3, the authors constructed a planar poset Pm with m minimal elements such
that dim(P ) > m+ 3.

Let h(P ) denote the height of a poset P . Observe that for every poset P we have wheel(P ) 6
h(P ). Therefore, Theorem 5 implies the following.

Corollary 9. Let P be a cover-planar poset with a unique minimal element. Then

dim(P ) 6 2h(P ) + 2.

The assumption on a unique minimal element seems to simplify a lot, as in general, it is only
known that dim(P ) 6 ch6(P ) for every cover-planar poset P and some absolute constant c
(the first bound was given in [18], later improved in [13]). In the case of posets with a planar
diagram, the best known bound is linear, however, with a much worse multiplicative constant,
namely, we have dim(P ) 6 192h(P ) + 96 for every poset P with a planar diagram [10].

2. Background material

We use the symbol := to underline that some object is defined. For natural numbers a, b we
write [a, b] for the set {a, a + 1, . . . , b}. To simplify, we abbreviate [a] := [1, a]. For a given
positive number N and i, j ∈ [N ] let 〈i, j〉 := [i, j] if i 6 j and 〈i, j〉 := [j,N ]∪ [1, i] otherwise.
We call 〈i, j〉 a cyclic interval. The number N will always be clear from the context.

We have already shown a drawing of the cover graph of the wheel H6 in part B of Figure 1.
Now, we will define the family of the wheels in a formal manner. For a natural number N > 3,
the wheel of order N is a poset with the ground set {ri,j : i, j ∈ [N ], j+1 6≡ i mod N}∪{min}.
We have ri,j 6 ri′,j′ in the poset if and only if 〈i′, j′〉 ⊆ 〈i, j〉, and moreover, min is less than
every other element. Note that the poset induced by the set {ri+1,i−1 : i ∈ [N ]}∪{ri,i : i ∈ [N ]}
is the standard example of order N . See Figure 2 for an illustration.

In [14] the authors showed that if a cover-planar poset with a unique minimal element has
large dimension, then it has a large standard example as a subposet. The proof relies on a
deep understanding of the structure of such posets. A few reductions allow us to “find” a
standard example in a much simpler setting than the general one. We are going to show that
this standard example is embedded in the wheel. To state the mentioned reductions, we need
a few definitions from [14] and [13].
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Figure 2. A planar drawing of the cover graph of the wheel H7 along with the
natural orientation. All comparabilities go upward unless specified otherwise
by an arrow. The red and blue elements form a standard example. An element
ri,j is below the elements b exactly with indices in the interval 〈i, j〉. Note that
one can also attach a unique maximal element.

Let us fix a cover-planar poset P = (X,6P ) with a unique minimal element x0, and let us fix
a plane drawing of its cover graph G with x0 on the exterior face. We attach a one-end edge
e∞ to x0 in such a way that the edge is contained in the exterior face. The special edge is
directed towards x0, that is, e∞ enters x0.

A path in the graph G is a tuple W = (u0, u1, . . . , us) of pairwise distinct vertices such that
for each i ∈ [s] either ui−1 covers ui in P or ui covers ui−1 in P . For every 0 6 i 6 j 6 s,
we denote by ui[W ]uj the path (ui, . . . , uj). Let x, y ∈ X be such that x 6P y. A path
W = (u0, u1, . . . , us) in G is called a witnessing path from x to y if u0 = x, us = y, and for
each i ∈ [s] we have ui−1 <P ui.

Let u ∈ X and e be an edge entering u in G. There is a natural left to right (clockwise) order
of the edges leaving u: start with e and go clockwise around u following the plane drawing of
G. We will refer to this ordering as (u, e)-ordering. See part A of Figure 3.

Let u ∈ X. The leftmost witnessing path from x0 to u, denoted by WL(u), is constructed using
the following inductive procedure. Start with u0 := x0 and e0 := e∞. We have u0 6P u and
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Figure 3.
A. The (u, e)-ordering of the edges leaving u is e1 < e2 < e3 < e4 < e5.
B. The witnessing paths W and W ′ start together and split in the vertex u3.
The edge e4 is left of the edge e′4 in the (u3, e3)-ordering, thus the path W is
left of the path W ′.

e0 enters u0. Suppose that for some i > 0 we have defined a witnessing path Wi = (u0, . . . , ui)
where ui 6P u and an edge ei entering ui. If ui = u, then WL(u) := Wi. Otherwise, let Ei
be the set of all edges e = uiv leaving ui such that there exists a witnessing path from v to
u. It follows that Ei is nonempty. We define ei+1 as the leftmost edge in the set Ei with
respect to the (ui, ei)-ordering. Next, we define ui+1 to be the other endpoint of ei+1. In an
analogous way, we define the rightmost witnessing path from x0 to u denoted by WR(u). See
part A of Figure 4 for an example. Such witnessing paths satisfy many natural properties.
For instance, if u, u′ ∈ X, then the paths WL(u) and WL(u′) start together, and once they
split they never meet again (analogous claim holds for the paths WR(u) and WR(u′)). For a
detailed and technical analysis see [14, Section 3].

LetW = (u0, . . . , us) andW ′ = (u′0, . . . , u
′
s′) be two witnessing paths from x0 to some elements

in P such that none is a prefix of the other. Let e0 = e′0 = e∞, for each i ∈ [s], let ei := ui−1ui,
and for each i ∈ [s′], let e′i := u′i−1u

′
i. Let i be the minimal index such that ei 6= e′i, clearly i > 0.

We say that W is left of (right of ) W ′ if ei is left of (right of) e′i in the (ui−1, ei−1)-ordering,
see part B of Figure 3.

We say that an incomparable pair (a, b) is a left pair if WL(a) if left of WL(b) and WR(a) is
left of WR(b). An incomparable pair (a, b) is a right pair if WL(a) if right of WL(b) and WR(a)
is right of WR(b). See part B of Figure 4.

For two given elements x, y ∈ X with x 6P y and two witnessing paths W and W ′ from x to y
such that the only common elements ofW andW ′ are x and y, the (x, y,W,W ′)-interval is the
region on the plane enclosed by W and W ′ that does not contain e∞. A subposet induced by
an interval is a subposet induced by all elements in the interval. An interval has a shadowing
property if for every element z ∈ X lying in the interval and for each D ∈ {L,R} the path
WD(z) contains x and the path x[WD(z)]z is contained in the interval. Let Q be induced by
the interval. It follows that x is a unique minimal element of Q. Note that the planar drawing
of P induces a planar drawing of Q with x on the exterior face. The shadowing property of
the interval gives that for every x, y in the interval such that (x, y) is a left (or right) pair in P
we have that (x, y) is a left (or right) pair in Q. We will use this observation implicitly many
times.
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u

x0

WL(u)

WR(u)

e∞

a

b

a left pair (a, b)

A B

x0

e∞

Figure 4.
A. An example of WL(u) and WR(u) for some element u ∈ X. Note that
witnessing paths can “turn back”. In this figure only once, however, in general
arbitrarily many times.
B. An example of a left pair (a, b).

We are ready to state the result from [14], which is a starting point for our proof. Recall
that the main result of [14] is dim-boundedness of cover-planar posets with unique minimal
elements. The next lemma is a stronger statement, namely, it describes “how” a poset contains
a large standard example in the considered setting, see part A of Figure 5. Using this particular
description, we are going to prove that this standard example forces the wheel as a subposet,
see Figure 8.

Lemma 10. [14, Proposition 12, Corollary 35] Let k > 2 and P = (X,6P ) be a cover-planar
poset with a unique minimal element x0 and dim(P ) > 2k + 1. Fix a plane drawing of the
cover graph of P with x0 on the exterior face. There exist two elements x, y ∈ X with x 6P y,
two witnessing paths W,W ′ from x to y, and a1, . . . , ak, b1, . . . , bk ∈ X such that:

(i) the (x, y,W,W ′)-interval satisfies the shadowing property,
(ii) a1, . . . , ak, b1, . . . , bk are in the interval and induce the standard example of order k in P ,
(iii) we have aα ‖P y and y <P bα for each α ∈ [k],
(iv) (aα, aβ) and (bα, bβ) are left pairs for all 1 6 α < β 6 k.

Suppose that a poset P satisfies the assumptions of the above lemma. Let x, y ∈ X and
witnessing paths W,W ′ be such that items (i)–(iv) are satisfied. Let Q = (Y,6Q) be a poset
induced by the (x, y,W,W ′)-interval. From now on, we are going to restrict our attention to
the poset Q. We define

Â := {z ∈ Y : y ‖Q z}, B̂ := {z ∈ Y : y <Q z}, and Ê := {z ∈ Y : x 6Q z 6Q y}.

Note that Y = Â ∪ B̂ ∪ Ê. Fix (a, b) ∈ Â × B̂ such that a <Q b. Let pL (resp. pR) be the
least element on WL(b) (resp. WR(b)) such that a <Q pL (resp. a <Q pR). Let W be some
witnessing path from a to pL (resp. pR). We define a left separating path NL(a, b) associated
with a and b as the path (not necessarily a witnessing path!) that consists of the segments:
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y

. . .a1 ak−1 ak

. . .
b1b2

a2

bk−1bk

y

WR(a)

WL(b)

pL

NL(a, b)

left
right

A B

W

x

a

b

Figure 5.
A. An illustration of the assertion of Lemma 10. There is an interval along
with a standard example within. The elements a are in the left-to-right order
as well as the elements b (note that (b1, b2) is a left pair!). The comparabilities
in the standard example are drawn with dotted grey lines. Most of our proof
focuses on introducing structure to these comparabilities.
B. An example of a left separating path NL(a, b). It starts with a segment
of the leftmost witnessing path to a, then it turns into some path witnessing
a <Q pL, and finally, it goes backward with the leftmost witnessing path to b.

(see part B of Figure 5)
x[WR(a)]a, a[W ]pL, y[WL(b)]pL.

We define a right separating path NR(a, b) associated with a and b as the path that consists of
the segments

x[WL(a)]a, a[W ]pR, y[WR(b)]pR.

The element pL (resp. pR) is called the peak of a path NL(a, b) (resp. NR(a, b)). Given a
separating path in an interval, we can naturally say that some objects are on the left or on the
right of the path. Let us finish this section with one simple observation on separating paths,
which somehow justifies the name.

Observation 11. Let P, x, y,W,W ′, Q, Â, B̂ be as above. Let a, a′ ∈ Â, b ∈ B̂ be such that
a <Q b and (a, a′) is an incomparable left pair. For every left or right separating path N
associated with a and b (NL(a, b) or NR(a, b)) the element a′ is on the right of the path N .
Symmetrically, if (a, a′) is an incomparable right pair, then the element a′ is on the left of the
path N .

Proof. We only prove the first part – the second one is symmetric. First, we claim that for
every left or right separating path N associated with a and b with the peak p and for each
D ∈ {L,R} the only common element of the path WD(a) and a[N ]y is a. Indeed, if the paths
WD(a) and p[N ]y intersect, then y 6Q a, contradiction. If WD(a) and a[N ]p intersect, say in
element z then a[N ]z concatenated with z[WD(a)] is a directed cycle. See part A of Figure 6.
This proves the claim.
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A B

a′

z

x
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p

WR(a)WL(a)

a′

b

Figure 6. Dashed lines depict the behavior of considered paths that leads to
a contradiction.
A. The path WL(a) has to stay on the left of a separating path.
B. The element a′ has to be on the left of a separating.

Let M be the concatenation of WR(a) and a[N ]y. The above claim implies that none of the
elements of the path WL(a) (and obviously WR(a)) is right of M . Therefore, if a′ is on the
right of M then it is on the right of N .

The pair (a, a′) is a left pair, thus, the first edge zz′ of WR(a′) that is not on the path WR(a)
is right of N . Suppose that a′ is on the left of M , then z′[WR(a′)]a′ intersects M , see part
B of Figure 6. Let z′′ be the least common element. If z′′ belongs to y[M ]p, then y 6Q a′,
thus, z′′ lies on x[M ]p. If z′′ belongs to the path x[WR(a)]z, then there is a directed cycle. If
z′′ belongs to the path z[WR(a)]a−{z}, then a concatenation of x[WR(a)]z, z[WR(a′)]z′′, and
z′′[WR(a)]a is a witnessing path to from x to a, which is right of WR(a), and this contradicts
the definition of WR(a). Finally, if z′′ lies on the path a[M ]p − {a}, then a 6Q z′′ 6Q a′,
however, (a, a′) was supposed to be an incomparable pair. �

3. The Proof of Theorems 5 and 6

Let P be a cover-planar poset with a unique minimal element x0 such that dim(P ) > 4n + 3
for some n > 2. Fix a planar drawing of the cover graph of P with x0 on the exterior face.
The goal is to find the wheel of order 2n+ 1 as a subposet of P and the n× n grid as a minor
of the cover graph of P . Lemma 10 applied to P with k = 2n+ 1 gives us a standard example
a1, . . . , ak, b1, . . . , bk within an interval in P satisfying items (i)–(iv). Let Q = (Y,6Q) be the
subposet induced by the interval. For each α ∈ [2n], we choose Mα := NR(aα, bα+1) with the
peak pα, and we choose Nα := NL(aα+1, bα) with the peak qα, see part A of Figure 7. Define

A := {aα : α ∈ [2n+ 1]}, Â := {z ∈ Y : z ‖Q y},

B := {bα : α ∈ [2n+ 1]}, B̂ := {z ∈ Y : y 6Q z},
C := {pα : α ∈ [2n]}, D := {qα : α ∈ [2n]}.

We claim that the sets C and D induce chains such that p1 <Q · · · <Q p2n and q2n <Q · · · <Q
q1, see also part B of Figure 7.
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Figure 7.
A. Paths Mα and Nα.
B. A situation asserted in Claim 12 and Claim 14.

Claim 12. For each α ∈ [2n− 1] we have pα ∈WR(pα+1) and qα+1 ∈WL(qα). In particular,
p1, . . . , p2n ∈WR(p2n) and q2n, . . . , q1 ∈WL(q1). Let

Ĉ := p1[WR(p2n)]p2n and D̂ := q2n[WL(q1)]q1.

Then, all the pairs in Ĉ × D̂ are incomparable pairs.

Proof. Fix some α ∈ [2n − 1]. First, note that pα+1 66Q pα, as otherwise aα+1 6Q pα+1 6Q
pα 6Q bα+1. By Observation 11 applied with the fixed interval, (a, b) := (aα, bα+1), N := Mα,
and a′ := aα+1 (the assumptions of the observation are satisfied by Lemma 10 (iii) and (iv))
we obtain that aα+1 is on the right of Mα.

We claim that pα+1 is right of Mα. Indeed, if pα+1 is not right of Mα, then the paths
aα+1[Nα+1]pα+1 and Mα intersect. Suppose that they do, and z is a common point. We
have aα+1 6Q z and z 6Q pα 6Q bα+1, hence aα+1 6Q bα+1, which is false.

Now we proceed with the proof of pα <Q pα+1. Let v be the greatest common element of
WR(pα) and WR(pα+1). Suppose that v <Q pα. The path WR(pα) is a prefix of the path
WR(bα+1), and analogously WR(pα+1) is a prefix of WR(bα+2). Therefore, by the fact that the
pair (bα+1, bα+2) is a left pair, we obtain that WR(pα) is left of WR(pα+1). Let vu be the edge
on WR(pα+1 leaving v. It follows that vu is left of Mα. However, we have already proved that
pα+1 is right of Mα, therefore, the path u[WR(pα+1)]pα+1 intersects Mα. Let z be an element
in this intersection. If z belongs to y[Mα]v, then z[Mα]v and u[WR(pα+1)]z form a directed
cycle. Therefore, z lies on x[Mα]pα or v[Mα]pα. The path obtained as the concatenation of
the paths x0[WR(pα+1)]z and zMαpα is a witnessing path from x to pα, and it is strictly right
of WR(pα). The contradiction yields v = pα, and this gives pα ∈ WR(pα+1). The proof that
qα+1 ∈WL(qα) is symmetric.

If the set Ĉ × D̂ contains a comparable pair, then either p1 6Q q1 or q2n 6Q p2n. Suppose
that p1 6Q q1. The element q1 is the peak of M1 = NL(a2, b1), thus, q1 6Q b1. On the
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Figure 8. The general idea of the proof is to show that the standard example
produced by Lemma 10 admits a similar structure as on the figure.

other hand a1 6Q p1. This implies a1 6Q b1, which is false. Analogously, if q2n 6Q p2n, then
a2n+1 6Q q2n 6Q p2n 6Q b2n+1. �

Remark 13. The set A ∪B ∪ C ∪D induces the Kelly poset of order 2n+ 1 in P .

At this point, we only know that the chains Ĉ and D̂ are incomparable. However, it is natural
to suspect that Ĉ is in some sense left of D̂, see part B of Figure 7. Let ŷ be the greatest
common point ofWR(p1) andWL(q2n). Note that y 6Q ŷ. Choose any witnessing pathW from
x0 to ŷ in P . We define Wp as the concatenation of W and ŷ[WR(p1)]p1, and symmetrically
Wq as the concatenation of W and ŷ[WL(q2n)]q2n.

Claim 14. The witnessing path Wp is right of the witnessing path Wq.

Proof. By Claim 12 we have WR(p1) ⊆ WR(b2) and WL(q2n) ⊆ WL(b2). Furthermore, ŷ is
the greatest common point of WR(p1) and WL(q2n), and belongs to the intersection of WR(b2)
and WL(b2). This yields the claim by the definition of the leftmost and rightmost witnessing
paths. �

For each α ∈ [2n], let Uα be the witnessing path from aα to pα that was chosen to be a part
of Mα = NR(aα, bα+1). Analogously, let Vα be the witnessing path from aα+1 to qα that was
chosen to be a part of Nα = NL(aα+1, bα).

We say that a witnessing path W crosses in order a tuple of witnessing paths (W1, . . . ,Ws)
if W intersects each path in the tuple and for every i ∈ [s − 1] all common points of W with
Wi are less in Q than all common points of W with Wi+1. For two witnessing paths W,W ′
we say that W is over W ′ if there does not exist w ∈ W and w′ ∈ W ′ such that w 6Q w′.
In particular, if one path is over another one, then they are disjoint. We say that W,W ′ are
incomparable if W is over W ′ and W ′ is over W .
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Claim 15. Let α ∈ [2n]. The witnessing path Uα has the following properties (see Figure 8).

(U1) Uα is over the paths U1, U2, . . . , Uα−1.
(U2) Uα crosses in order (Vα−1, Vα−2, . . . , V1).
(U3) Uα is incomparable with each of the paths Vα, Vα+1, . . . , V2n.

Analogously, the witnessing path Vα has the following properties.

(V1) Vα is over the paths Vα+1, Vα+2, . . . , V2n.
(V2) Vα crosses in order (Uα+1, Uα+2, . . . , U2n).
(V3) Vα is incomparable with each of the paths U1, U2, . . . , Uα.

Proof. To prove item (U1) suppose for a contradiction that there exist β ∈ [α − 1] and u ∈
Uα, u

′ ∈ Uβ such that u 6Q u′. We have

aα 6Q u 6Q u
′ 6Q pβ 6Q pα−1 6Q bα.

The fourth comparability follows from Claim 12. This is a contradiction. Analogously, we
obtain item (V1).

Note that if the path Uα crosses each of the paths Vα−1, Vα−2, . . . , V1, then we almost immedi-
ately obtain that it crosses them in order. Indeed, suppose that there exist 1 6 β < γ 6 α− 1
and v ∈ Vγ , v′ ∈ Vβ such that v, v′ ∈ Uα and v′ 6Q v. However, by item (V1) the path Vβ is
over the path Vγ , which is a contradiction.

Now, we will prove that the path Uα truly crosses each of the paths Vα−1, Vα−2, . . . , V1. The
element aα is a common point of Uα and Vα−1. Fix β ∈ [α − 2]. First, we argue that qβ is
on the right of Mα. If qβ lies on Mα, then we have qβ 6Q pα, which is false due to Claim 12.
Suppose that qβ is on the left of Mα. Let ŷu be the edge leaving ŷ in WL(qβ). By Claim 14,
ŷu is on the right of Mα. It follows that the path ŷ[WL(qβ)]qβ intersects the path Mα. Let z
be an element in this intersection. We consider all the cases of the position of the element z
on the path Mα, see part A of Figure 9.

If z ∈ y[Mα]ŷ, then there is a directed cycle in P . If z ∈ ŷ[Mα]p1\{ŷ, p1}, then we obtain a
contradiction with the definition of ŷ. If z ∈ p1[Mα]pα, then we have p1 6Q z 6Q qβ , which is
false because Ĉ and D̂ are incomparable. Suppose that z ∈ aα[Mα]pα. By Claim 12 we have
q2n ∈ WL(qβ). If q2n 6Q z, then q2n 6Q pα, thus, z <Q q2n. Therefore, aα 6Q z <Q q2n <Q
qα 6Q bα, which is false. If z ∈ x[Mα]aα, then y <Q z 6Q aα, which is false by Lemma 10 (iii).

We proved that qβ is on the right of Mα. By Observation 11 applied to the fixed interval,
(a, b) = (aα, bα+1), N = Mα, and a′ = aβ+1 (the pair (aα, aβ+1) is an incomparable right pair
due to Lemma 10 (iv)) we obtain that aβ+1 is on the left of Mα. It follows that the path Vβ
(connecting aβ+1 with qβ) intersects the path Mα. Let z be an element in this intersection.
Again we consider all the cases of the position of the element z on the path Mα, see part B of
Figure 9.

If z ∈ x[Mα]aα, then aβ+1 6Q aα, which is false. If z ∈ aα[Mα]pα = Uα, then the claim is
proved. If z ∈ p1[Mα]pα, then p1 6Q qβ , which is false. If z ∈ y[Mα]p1, then aβ+1 6Q z 6Q
p1 6Q pβ 6Q bβ+1, which is false.
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Figure 9. Dashed lines depict the behavior of considered paths that leads to
a contradiction.
A. The element qβ has to be right of Mα.
B. The path Vβ has to intersect Uα.

This concludes the proof that Uα crosses Vβ , and the whole item (U2). The proof of item (V2)
is symmetric.

Finally, we will prove (U3). Suppose that Uα is not incomparable with Vβ for some β ∈ [α, 2n].
First, suppose that there exist u ∈ Uα and v ∈ Vβ such that u 6Q v. Then by Claim 12 we
have

aα 6Q u 6Q v 6Q qβ 6Q qα 6Q bα.

This is false, therefore, there exists u ∈ Uα and v ∈ Vβ such that v 6Q u. However, then

aβ+1 6Q v 6Q u 6Q pα 6Q pβ 6Q bβ+1.

The contradiction gives us (U3) (and (V3) by symmetry). �

We are ready to prove Theorem 6, namely, that G contains n× n grid as a minor.

Let P := {Vα : α ∈ [2n− 1]} ∪ {Uβ : β ∈ [2, 2n]}. We start by removing all edges and vertices
that do not belong to any path in P obtaining a new graph H, which is a minor of G. Fix
some α and β such that 1 6 α < β 6 2n. By Claim 15 (U2) and (V2) the paths Vα and Uβ
intersect. Both paths induce chains in the poset, thus, the intersection is also a chain. Let
sα,β be the least element in the intersection and tα,β be the greatest.

Proof of Theorem 6. Define

Sα,β := {v ∈ V (H) : v ∈ sα,β[Vα]tα,β ∪ sα,β[Uβ]tα,β}.
Clearly, the graph H[Sα,β] is connected. The structure of the crossings of paths in P obtained
in Claim 15 yields that for every 1 6 α′ < β′ 6 2n such that (α, β) 6= (α′, β′) we have
Sα,β ∩ Sα′,β′ = ∅. Also note that each vertex of H that is not a member of any Sα,β belongs
to exactly one path in P, and thus is of degree at most 2. For each 1 6 α < β 6 2n we can
contract the set Sα,β obtaining a new graph H ′, which is still a minor of G. Clearly this graph
is a subdivision of the n× n grid, which ends the proof. �
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To conclude the proof of Theorem 5, we need to force the grid-like structure also in the upper
part of the drawing, see Figure 8. To this end, we prove the following.

Claim 16. If 1 < α < β < 2n+ 1, then the paths pα−1[WR(bα)]bα and qβ[WL(bβ)]bβ intersect.

Proof. Consider the region R enclosed by ŷ[WR(bα)]bα and ŷWL(bα)bα. Note that for each
z on the boundary of R we have y 6Q z 6Q bα. Moreover, for each z lying in R we have
y 6Q z. Indeed, x is not in R and x <Q z, it follows that a witnessing path from x to z crosses
the boundary of R, and hence y 6Q z. The element aα is outside of R because aα ‖Q y. If
pβ−1 was in R, then the path aα[Mα]pα concatenated with the path pα[Ĉ]pβ−1 would cross
the boundary of R resulting in aα <Q bα, which is a contradiction. Therefore, pβ−1 is outside
of R. Moreover, by the fact that aα <Q pβ−1, any witnessing path from pβ−1 to bβ do not
intersect the boundary of R, which implies that bβ is outside of R.

Consider the path W := qβ[WL(bβ)]bβ . By Claim 12 the element qβ lies on the boundary of R.
Recall that (bα, bβ) is a left pair (by Lemma 10 (iv)). Therefore, the first edge of W that is not
on WL(bα) is right of WL(bα). Note that this edge is inside R. However, bβ is outside R, thus
W intersects the boundary of R. Let z be the least element in the intersection of W and the
boundary of R. If z ∈ ŷ[WL(bα)]qβ , then we have a directed cycle. If z ∈ qβ[WL(bα)]bα\{qβ},
then the concatenation of

x0[WL(bα)]qβ, qβ[W ]z, z[WL(bα)]

is a witnessing path from x0 to bα, which is strictly left ofWL(bα), and contradicts the definition
of WL(bα). If z ∈ ŷ[WR(bα)]pα−1, and z is an element in the intersection, then qβ <Q z <Q
pα−1, which contradicts Claim 12. Therefore, we obtain that W = qβ[WL(bβ)]bβ intersects
pα−1[WR(bα)]bα. �

For 1 < α < β < 2n + 1, let zα,β be the least point in the intersection of the paths
pα−1[WR(bα)]bα and qβ[WL(bβ)]bβ (it is well-defined by Claim 16).

Claim 17. Let α ∈ [2, 2n− 1] and β ∈ [3, 2n].

(Z1) For every γ ∈ [α+ 1, 2n] we have zα,γ+1 <Q zα,γ.
(Z2) For every γ ∈ [3, β − 1] we have zγ−1,β <Q zγ,β.

Proof. Let γ ∈ [α+1, 2n]. Both elements zα,γ+1 and zα,γ lie on the path pα−1[WR(bα)]bα, thus
they are comparable. Suppose that zα,γ 6Q zα,γ+1. Then,

aγ+1 6Q qγ 6Q zα,γ 6Q zα,γ+1 6Q bγ+1.

This is a contradiction, thus zα,γ+1 <Q zα,γ , and item (Z1) is proved. The proof of item (Z2)
is symmetric. �

Now, we are ready to prove the main result of this paper, namely, that Q contains the wheel
of order 2n+ 1 as a subposet. To this end recall that the wheel of order 2n+ 1 is a poset on
the ground set {ri,j : i, j ∈ [2n+ 1], j + 1 6≡ i mod 2n+ 1} and ri,j 6 ri′,j′ in the wheel if and
only if 〈i′, j′〉 ⊆ 〈i, j〉. For simplicity, we will write that i, j are admissible if i, j ∈ [2n+ 1] and
j + 1 6≡ i mod 2n+ 1.

Proof of Theorem 5. We define
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• rβ,α := sα,β−1 for each α, β ∈ [2n+ 1] with α+ 1 < β,
• rα,α := bα for each α ∈ [2n+ 1],
• rα,β := zα,β for each 1 < α < β < 2n+ 1,
• r1,β := qβ for each 1 < β < 2n+ 1,
• rα,2n+1 := pα−1 for each 1 < α < 2n+ 1.

By the combination of all already established claims for every admissible i, j we have ri,j 6Q bγ
if and only if γ ∈ 〈i, j〉. Therefore, if 〈i′, j′〉 6⊆ 〈i, j〉, then ri,j ‖Q ri′,j′ . It suffices to show that
if 〈i′, j′〉  〈i, j〉, then ri,j <Q ri′,j′ . By transitivity, it suffices to show the above only in the
case where |〈i, j〉\〈i′, j′〉| = 1. We will study this case by case.

Let 1 < α 6 β < 2n. By Claim 17 (Z1), we have rα,β+1 <Q rα,β .

Let 2 < α 6 β < 2n+ 1. By Claim 17 (Z2) we have rα−1,β <Q rα,β .

Let α = 2 and 2 < β < 2n + 1. Then, r1,β 6Q r2,β by definition. If qβ = r1,β = r2,β = z2,β ,
then p1 6Q qβ , which contradicts Claim 12.

Let 1 < α < 2n + 1 and β = 2n. Then, rα,2n+1 6Q rα,2n by definition. If pα−1 = rα,2n+1 6Q
rα,2n = zα,2n, then q2n 6Q pα−1, which contradicts Claim 12.

Let α = 1 and 2 < β < 2n + 1. We want to prove that r2n+1,β <Q r1,β . In other words
sβ,2n <Q qβ . It is clear by definition that sβ,2n 6Q qβ . If the comparability is not strict, then
we have qβ = sβ,2n 6Q p2n, which contradicts Claim 12.

Let 1 < α < 2n + 1 and β = 2n + 1. We want to prove that rα,1 <Q rα,2n+1. In other words
s1,α−1 <Q pα−1. It is clear by definition that s1,α−1 <Q pα−1. If the comparability is not
strict, then we have pα−1 = s1,α−1 6Q q1, which contradicts Claim 12.

Let α, β ∈ [2n+ 1] with α+ 2 < β. By Claim 15 (V2) we have rβ+1,α = sα,β <Q sα,β−1 = rβ,α.
And, by Claim 15 (U2) we have rβ,α−1 = sα−1,β−1 <Q sα,β−1 = rβ,α. �

4. Open problems

Let m(P ) be the number of minimal elements of P and t(P ) be the treewidth of the cover
graph of P . We proved that for a cover-planar poset P we have dim(P ) 6 m(P )(4t(P ) + 6).
It is natural to ask if this inequality is asymptotically tight. For the wheels we have dim(Hd)
being Ω(t(Hd)). On the other hand, for the Kelly posets we have dim(Kd) being Ω(m(Kd)).
Therefore, in general, dim(P ) is Ω(t(P ) + m(P )) among cover-planar posets. We conjecture
that this is not a matching lower bound.

Conjecture 18. Among posets cover-planar posets, we have dim(P ) is Ω(m(P )t(P )).

We also proved that among cover-planar posets with unique minimal elements large dimension
forces a large wheel number. Interestingly, we do not know any essentially different con-
structions of cover-planar posets with large standard example number and a unique minimal
element. Therefore, we conjecture the following.

Conjecture 19. For every poset P with a unique minimal element and a planar cover graph,
we have

se(P ) = wheel(P ).
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Note that the above is not true (even with an additive factor) if we drop the assumption on a
unique minimal element. In [10, Theorem 3] authors constructed a cover-planar poset Ph for
each positive h such that the height of Ph is h and se(Ph) > 2h− 2. Recall that the height of
the wheel Hd is equal to d. Therefore, wheel(Ph) 6 h. Finally, one can attach two elements
to Ph in such a way that Ph has exactly two minimal elements, and the height increases by at
most one.
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