A DECOMPOSITION THEOREM FOR COLLECTIONS OF UNIVERSAL SUBCONTINUA

 \mathbf{BY}

WILLIAM T. TROTTER, JR. (CHARLESTON, S. C.)

Let X be a topological space and $A \subset X$ be a continuum. Then A is called a universal subcontinuum (USC) of X if $A \cap B$ is connected for every continuum $B \subset X$. In this paper, we will be concerned with the problem of decomposing a collection of USC's into subcollections which have the finite intersection property. This problem was inspired by Hadwiger and DeBrunner's extension [3] of Helly's theorem [4] for collections of compact convex subsets of a Euclidean space. Another result which is similar in statement to, but not directly related to, the main theorem of this paper is Dilworth's theorem [1]. We note that universal subcontinua were originally studied by Wallace [5] under the title "semi-chains".

Gray [2] has essentially shown that an analogous result to Helly's theorem holds for a collection of USC's in a Hausdorff space.

THEOREM 1 (Gray). Let a be a collection of USC's in a Hausdorff space. Then a has the finite intersection property if and only if every pair of elements of a has a common point.

We will prove that the following result is valid:

THEOREM 2. Let a be a collection of USC's in a Hausdorff space. Suppose there exists integers p, q with $p \geqslant q \geqslant 2$ such that for every p elements of a, at least q of them have a common point. Then there exists an integer $t \leqslant p-q+1$ and a decomposition $a=a_1 \cup a_2 \cup \ldots \cup a_t$ where each a_i has the finite intersection property.

LEMMA 1 (Wallace [5]). The intersection of an arbitrary collection of USC's is a USC.

LEMMA 2 (Wallace [5]). Let A and B be USC's. If $A \cap B \neq \emptyset$, then $A \cup B$ is a USC.

LEMMA 3. Let F_1, F_2, \ldots, F_n be non-empty pairwise disjoint USC's. Let G_1, G_2, \ldots, G_n be non-empty USC's each of which intersects at least two distinct F_i 's. Then $\{G_1, G_2, \ldots, G_n\}$ is not pairwise disjoint.

Proof. The proof is by induction. Consider the case n=2 and suppose $\{G_1, G_2\}$ is pairwise disjoint. Then by Lemma 2, $F_1 \cup G_1 \cup F_2$ and $F_1 \cup G_2 \cup F_2$ are USC's and, by Lemma 1, $(F_1 \cup G_1 \cup F_2) \cap (F_1 \cup G_2 \cup F_2)$ is also a USC. But $(F_1 \cup G_1 \cup F_2) \cap (F_1 \cup G_2 \cup F_2) = F_1 \cup F_2 = F_1|F_2$. The contradiction shows that $\{G_1, G_2\}$ is not pairwise disjoint.

We assume the lemma is valid for n=2,3,...,k-1; $k \ge 3$ and consider the case n=k. Suppose $\{F_1,F_2,...,F_k\}$ and $\{G_1,G_2,...,G_k\}$ are pairwise disjoint and each G_j intersects at least two distinct F_i 's. Suppose there is an F_i for which $F_i \cap G_j = \emptyset$ for every j. Then the collections $\{F_1,...,\hat{F}_i,...,F_k\}$ and $\{G_1,...,\hat{G}_i,...,G_k\}$ satisfy the hypothesis for n=k-1. Hence $\{G_1,G_2,...,G_k\}$ is not pairwise disjoint. The contradiction shows that for every F_i , there is some G_i for which $F_i \cap G_j \neq \emptyset$.

Now suppose that for some F_i , there is only one G_j for which $F_i \cap G_j \neq \emptyset$. Then the collections $\{F_1, ..., \hat{F}_i, ..., F_k\}$ and $\{G_1, ..., \hat{G}_j, ..., G_k\}$ satisfy the hypothesis for n = k-1. The contradiction shows each F_i intersects at least two distinct G_i 's.

We may suppose that F_1 and F_2 are intersected by G_1 . Suppose we have renumbered the F_i 's and G_j 's such that F_{i-1} and F_i are intersected by G_{i-1} , i=2,3,...,p, where $1 . Since <math>F_p \cap G_{p-1} \neq \emptyset$ and F_{p-1} intersects G_{p-2} and G_{p-1} , we must have $F_p \cap G_{p-2} = \emptyset$ if p > 2. Then by induction, $F_p \cap G_i = \emptyset$, $i \le p-2$. Since F_p meets two of the G_j , we may assume $F_p \cap G_p \neq \emptyset$. We now find that $G_p \cap F_i = \emptyset$, $i \le p-1$. Since G_p meets two of the F_i , we may assume that $G_p \cap F_{p+1} \neq \emptyset$. This proves that we may assume that G_i intersects F_i and F_{i+1} , i=1,2,... ..., n-1. Suppose G_n meets F_j , j < n. Since F_j and F_{j+1} are intersected by G_j , $G_n \cap F_{j+1} = \emptyset$. Then by induction, $G_n \cap F_i = \emptyset$, i > j. Likewise $G_n \cap F_i = \emptyset$, i < j. This contradiction proves the lemma.

THEOREM 3. Let α be a collection of non-empty USC's of a Hausdorff space. Suppose there is an integer $n \ge 2$ such that for every n elements of α , at least two have a common point. Then there is an integer $t \le n-1$ and a decomposition $\alpha = \alpha_1 \cup \alpha_2 \cup \ldots \cup \alpha_t$ where each α_i has the finite intersection property.

Proof. The proof is by induction. Theorem 1 shows that the theorem is true for n = 2. Suppose that the theorem is true for $n = 2, 3, \ldots, k-1$; $k \ge 3$ and assume α is a collection of USC's satisfying the hypothesis for n = k. We assume further that α does not have the required decomposition.

Then α has a subcollection $\{F_1, F_2, \ldots, F_{k-1}\}$ which is pairwise disjoint; otherwise α satisfies the hypothesis for n = k-1. We make the following definitions:

(a) Let γ be a subcollection of α . We will use the notation $\bigcap \gamma$ to indicate $\bigcap_{H \in \gamma} H$.

(b) For $i \leq k-1$, let $F_i^0 = \{F_i\}$. For $i \leq k-1$, $p \geqslant 1$ define F_i^p by

 $F_i^p = \{H \in \alpha | \ H \cap [\bigcap F_j^{p-1}] \neq \emptyset \ ext{if and only if} \ i = j\} \cup F_i^{p-1}.$

(c) For
$$i\leqslant k-1$$
, define F_i^∞ by $F_i^\infty=\bigcup_{p=0}^\infty F_i^p$.

We now prove that the following statements are valid:

- (s_1) For every $i \leq k-1$, $F_i^0 \subset F_i^1 \subset F_i^2 \subset \dots$
- (s₂) For every $i \leq k-1$, $\bigcap F_i^0 \supset \bigcap F_i^1 \supset \bigcap F_i^2 \supset \dots$
- (s₃) For every $i \leqslant k-1$ and every $p \geqslant 0$, F_i^p has the finite intersection property.
 - (s₄) For every $i \leq k-1$, F_i^{∞} has the finite intersection property.
 - (s₅) For every $H \in a$, there is some $i \leq k-1$ such that $H \cap [\bigcap F_i^{\infty}] \neq \emptyset$.
- (s₆) Let $H \in a$; suppose there exists $i \leq k-1$ such that $H \cap [\bigcap F_j^{\infty}] \neq \emptyset$ if and only if i = j. Then $H \in F_i^{\infty}$.

Proof of (s₁). This is an immediate consequence of the definitions.

Proof of (s_2) . This is an obvious consequence of (s_1) .

Proof of (s_3) . The proof is by induction. For each i, F_i^0 consists of a single non-empty USC and thus has the finite intersection property. Let i be fixed and consider H, $G \in F_i^1$. Then the subcollection $\{H, G, F_1, F_2, \ldots, \hat{F}_i, \ldots, F_{k-1}\}$ is a collection of k elements and thus $H \cap G \neq \emptyset$, i.e. F_i^1 has the finite intersection property. Suppose F_i^p has the finite intersection property for $p = 0, 1, 2, \ldots, m-1$; $m \ge 2$. Suppose H, $G \in F_i^m$ such that $H \cap G = \emptyset$. Let

$$egin{aligned} L_0 &= \{j \leqslant k-1 | \ j
eq i \ ext{and} \ H \cap F_j
eq \emptyset \}, \ K_0 &= \{j \leqslant k-1 | \ j
eq i \ ext{and} \ G \cap F_j
eq \emptyset \}. \end{aligned}$$

If $L_0 = \emptyset$, then $H \in F_i^1$ and $G \cap H \neq \emptyset$. Similarly, if $K_0 = \emptyset$, then $G \in F_i^1$ and $G \cap H \neq \emptyset$. Now suppose $L_0 \cap K_0 \neq \emptyset$ and let $j \in L_0 \cap K_0$. Then F_i and F_j are disjoint USC's intersected by G and H and thus $G \cap H \neq \emptyset$. The contradiction shows $L_0 \cap K_0 = \emptyset$.

Since $H, G \in F_i^m$, for every $j \neq i$ we have

$$H \cap [\bigcap F_j^{m-1}] = \emptyset = G \cap [\bigcap F_j^{m-1}].$$

Then for every $j \, \epsilon \, L_0$ there is some integer q_j with $0 \leqslant q_j \leqslant m-2$ such that

$$H \cap [\bigcap F_j^{q_j}]
eq \emptyset = H \cap [\bigcap F_j^{q_j+1}].$$

Similarly, for every $j \in K_0$ there is some integer q_j with $0 \leqslant q_j \leqslant m-2$ such that

$$G \cap [\bigcap F_j^{q_j}]
eq \emptyset = G \cap [\bigcap F_j^{q_j+1}].$$

Therefore for every $j \in L_0$, there exists $A_j^0 \in F_j^{q_j+1}$ such that $H \cap A_j^0 = \emptyset$. Similarly for every $j \in K_0$, there exists $B_i^0 \in F_j^{q_j+1}$ such that $G \cap B_j = \emptyset$.

We now show that the collection $\{H, G\} \cup \{A_j^0 | j \in L_0\} \cup \{B_j^0 | j \in K_0\}$ is pairwise disjoint. We already have:

$$(\mathbf{t}_1) \ H \cap G = \emptyset.$$

(t₂)
$$H \cap A_i^0 = \emptyset$$
 for every $j \in L_0$.

(t₃)
$$G \cap B_j^0 = \emptyset$$
 for every $j \in K_0$.

It remains to show that:

(t₄)
$$G \cap A_j^0 = \emptyset$$
 for every $j \in L_0$.

(t₅)
$$H \cap B_j^0 = \emptyset$$
 for every $j \in K_0$.

(t₆)
$$A_{j_1}^0 \cap A_{j_2}^0 = \emptyset$$
 for every $j_1, j_2 \in L_0$ with $j_1 \neq j_2$.

$$(\mathbf{t_7}) \ \ B_{j_1}^{0^-} \cap B_{j_2}^{0^-} = \emptyset \ \ for \ \ every \ \ j_1, j_2 \, \epsilon \, K_0 \ \ with \ \ j_1
eq j_2.$$

$$(\mathbf{t_8}) \ A_{j_1}^0 \cap B_{j_2}^0 = \emptyset \ for \ every \ j_1 \epsilon L_0 \ and \ for \ every \ j_2 \epsilon K_0.$$

Suppose $G \cap A_j^0 \neq \emptyset$ for some $j \in L_0$. Since $A_j^0 \in F_j^{q_j+1}$,

$$A_{j}^{0}\cap [\bigcap F_{j}^{q_{j}}]
eq \emptyset = A_{j}^{0}\cap [\bigcap F_{i}^{q_{j}}].$$

Therefore $A_j^0 \cup [\bigcap F_j^{q_j}]$ and $\bigcap F_i^{q_j}$ are disjoint USC's intersected by H and G. The contradiction proves (t_4) . The proof of (t_5) is similar.

Now suppose $j_1, j_2 \in L_0, j_1 \neq j_2$ and $A^0_{j_1} \cap A^0_{j_2} \neq \emptyset$. Then $A^0_{j_1} \cup A^0_{j_2}$ is a USC and $H \cap [A^0_{j_1} \cup A^0_{j_2}] = \emptyset$. But $\bigcap F^{q_{j_1}}_{j_1}$ and $\bigcap F^{q_{j_2}}_{j_2}$ are disjoint USC's intersected by H and $A^0_{j_1} \cup A^0_{j_2}$. The contradiction proves (t_6) . The proof of (t_7) is similar.

Suppose $j_1 \in L_0$, $j_2 \in K_0$ and $A_{j_1}^0 \cap B_{j_2}^0 \neq \emptyset$. Then $\{A_{j_1}^0 \cup [\bigcap F_{j_1}^{q_{j_1}}]\}$ $\cup \{B_{j_2}^0 \cup [\bigcap F_{j_2}^{q_{j_2}}]\}$ and $\bigcap F_i^{m-1}$ are disjoint USC's intersected by H and G. The contradiction proves (t_8) .

Let H_1 and G_1 be defined by

$$egin{aligned} H_1 &= H \, \cup igcup_{j \in L_0} \{A_j^0 \, \cup \, [igcap F_j^{q_j}]\}, \ G_1 &= G \, \cup igcup_{j \in K_0} \{B_j^0 \, \cup \, [igcap F_j^{q_j}]\}. \end{aligned}$$

Then it is obvious that H_1 and G_1 are USC's. We prove that they are disjoint. We need to show:

$$(\mathbf{t_0}) \ A_{j_1}^0 \cap [\bigcap F_{j_2}^{q_{j_2}}] = \emptyset \ \textit{for every } j_1 \epsilon L_0 \ \textit{and for every } j_2 \epsilon K_0.$$

$$(\mathbf{t}_{10})$$
 $B_{j_1}^{\hat{\mathbf{0}}} \cap [\bigcap F_{j_2}^{\hat{\mathbf{0}}_{j_2}}] = \emptyset$ for every $j_1 \in K_0$ and for every $j_2 \in L_0$.

Suppose $j_1 \in L_0$, $j_2 \in K_0$ and $A_{j_1}^0 \cap [\bigcap F_{j_2}^{q_{j_2}}] \neq \emptyset$. Then $F_{j_1} \cup A_{j_1}^0 \cup F_{j_2}$ and F_i are disjoint USC's intersected by G and H. The contradiction proves (t_0) . The proof of (t_{10}) is similar. Thus $H_1 \cap G_1 = \emptyset$.

Define L_1 and K_1 as follows:

$$L_1 = \{j \leqslant k-1 | j \neq i \text{ and } H_1 \cap F_j \neq \emptyset\},$$
 $K_1 = \{j \leqslant k-1 | j \neq i \text{ and } G_1 \cap F_i \neq \emptyset\}.$

It is obvious that $L_0 \subset L_1$ and $K_0 \subset K_1$. Since H_1 and G_1 are disjoint, we have $L_1 \cap K_1 = \emptyset$. Suppose $L_1 - L_0 = \emptyset = K_1 - K_0$. Then

$$\{H,G\} \cup \{A_j^0|\ j \in L_0\} \cup \{B_j^0|\ j \in K_0\} \cup \{F_j|\ j \notin L_0 \cup K_0, j \neq i\}$$

is a collection of k pairwise disjoint elements of a.

The contradiction shows that at least one of $L_1 - L_0$ and $K_1 - K_0$ is non-empty. We now repeat the process in the following manner.

For every $j \in L_1 - L_0$, there is some integer q_j with $0 \leqslant q_j \leqslant m-3$ such that $H_1 \cap [\bigcap F_j^{q_j}] \neq \emptyset = H_1 \cap [\bigcap F_1^{q_{j+1}}].$

Similarly for every $j \in K_1 - K_0$ there is some integer q_j with $0 \le q_j \le m-3$ such that

 $G_1\cap [\bigcap F_j^{q_j}]
eq \emptyset=G_1\cap [\bigcap F_j^{q_{j+1}}].$

Therefore for every $j \in L_1 - L_0$ there exists $A_j^1 \in F_j^{q_{j+1}}$ such that $H_1 \cap A_j^1 = \emptyset$. Similarly, for every $j \in K_1 - K_0$ there exists $B_j^1 \in F_j^{q_{j+1}}$ such that $G_1 \cap B_j^1 = \emptyset$.

As before, the collection

$$\{H_1, G_1\} \cup \{A_j^1 | j \in L_1 - L_0\} \cup \{B_j^1 | j \in K_1 - K_0\}$$

is pairwise disjoint. We define

$$egin{aligned} H_2 &= H_1 \cup igl(igcup_{j \in L_1 - L_0} \{A_j^1 \cup [igcap F_j^{q_j}]\}igr), \ G_2 &= G_1 \cup igl(igcup_{j \in K_1 - K_0} B_j^1 \cup [igcap F_j^{q_j}]\}igr). \end{aligned}$$

Then G_2 and H_2 are disjoint USC's. We define L_2 and K_2 by

$$L_2 = \{j \leqslant k-1 | j \neq i, H_2 \cap F_j \neq \emptyset\}$$

and

$$K_2 = \{j \leqslant k-1 | j \neq i, G_2 \cap F_j \neq \emptyset\}.$$

Then $L_0\subset L_1\subset L_2$; $K_0\subset K_1\subset K_2$; and $L_2\cap K_2=\emptyset$. If $L_2-L_1=\emptyset=K_2-K_1$, then

$$egin{aligned} \{H,G\} \, \cup \, \{A_j^0|\, j\, \epsilon\, L_0\} \, \cup \, \{A_j^1|\, j\, \epsilon\, L_1-L_0\} \, \cup \, \{B_j^0|\, j\, \epsilon\, K_0\} \ & \cup \, \{B_j^1|\, j\, \epsilon\, K_1-K_0\} \, \cup \, \{F_j|\, j\,
eq\, i\, ,\, j\,
eq\, L_1\, \cup\, K_1\} \end{aligned}$$

is a collection of k pairwise disjoint elements of α . The contradiction shows at least one of $L_2 - L_1$ and $K_2 - K_1$ is non-empty.

This argument may be repeated to obtain sequences L_r and K_r which satisfy the following conditions:

- (a) $L_r \subset \{1, 2, ..., k-1\}; r \geqslant 0,$
- (b) $K_r \subset \{1, 2, ..., k-1\}; r \geqslant 0,$
- (c) $L_r \subset L_{r+1}$, $K_r \subset K_{r+1}$; $r \geqslant 0$,
- (d) $L_r \cap K_r = \emptyset$; $r \geqslant 0$.

If
$$r \geqslant 0$$
 and $L_{r+1} - L_r = \emptyset = K_{r+1} - K_r$, then

$$\{H,G\} \cup \{A_j^0 | j \in L_0\} \cup \{A_j^t | j \in L_t - L_{t-1}; 1 \leqslant t \leqslant r\}$$

$$\cup \{B_i^0 | j \in K_0\} \cup \{B_i^t | j \in K_t - K_{t-1}; 1 \leqslant t \leqslant r\} \cup \{F_i | j \neq i, j \notin L_r \cup K_r\}$$

is a collection of k pairwise disjoint elements of α . The contradiction shows at least one of $L_{r+1} - L_r$ and $K_{r+1} - K_r$ is non-empty.

It is clear that no such sequences L_r and K_r can exist. Thus the original assumption that $H \cap G = \emptyset$ must be false, i.e. $H \cap G \neq \emptyset$ and F_i^m has the finite intersection property.

Proof of (s_4) . Let $i \leq k-1$ and H, $G \in F_i^{\infty}$. Then there exist integers p, q such that $H \in F_i^p$ and $G \in F_i^q$. Then by (s_1) , $H \in F_i^{p+q}$ and $G \in F_i^{p+q}$ and since F_i^{p+q} has the finite intersection property, $H \cap G \neq \emptyset$. Thus F_i^{∞} has the finite intersection property.

Proof of (s_5) . Let $H \in a$. Suppose $H \cap [\bigcap F_i^{\infty}] = \emptyset$ for every $i \leq k-1$. Then for each i, there exists $G_i \in F_i^{\infty}$ such that $H \cap G_i = \emptyset$. And for each i there exists an integer p_i such that $G_i \in F_i$. Hence $H \cap [\bigcap F_i^{p_i}] = \emptyset$ for every $i \leq k-1$. Let $p = \sum_{i=1}^{K-1} p_i$. Then $H \cap [\bigcap F_i^p] = \emptyset$ for every $i \leq k-1$. We now show that for every $H \in a$ and for every integer $p \geq 0$, there is some $i \leq k-1$ such that $H \cap [\bigcap F_i^p] \neq \emptyset$.

The remainder of the proof of (s_5) is similar to the argument used in proving (s_3) and thus will be omitted.

Proof of (s_6) . For every $j \neq i$, there exists $A_j \in F_j^{\infty}$ such that $H \cap A_j = \emptyset$. Then for each $j \neq i$, there exists an integer $p_j \geqslant 0$ such that $A_j \in F_j^{p_j}$. Let $p = \sum_{j \neq i} p_j$. Then $H \cap [\bigcap F_j^p] = \emptyset$ for each $j \neq i$ and thus $H \in F_i^{p+1}$ and hence $H \in F_i^{\infty}$.

We now show that $a-F_1^{\infty}$ satisfies the hypothesis for n=k-1, i.e. for every k-1 elements of $a-F_1^{\infty}$, at least two have a common point. Let $A_1, A_2, \ldots, A_{k-1} \in a-F_1^{\infty}$. Suppose that $\{A_1, A_2, \ldots, A_{k-1}\}$ is pairwise disjoint.

Let $L = \{i \leqslant k-1 | \text{ There exists } j_i \leqslant k-1 \text{ such that } A_i \epsilon F_{j_i}^{\infty} \}$ and if $L \neq \emptyset$, let $K = \{j_i | i \epsilon L\}$. Suppose $L = \emptyset$. Then by (s_5) , for each A_i there is some j such that $A_i \cap [\bigcap F_j^{\infty}] \neq \emptyset$. Then by (s_6) each A_i intersects at least two distinct elements of the pairwise disjoint collection $\{\bigcap F_1^{\infty}, \bigcap F_2^{\infty}, \ldots, \bigcap F_{k-1}^{\infty}\}$. Then by Lemma 3, the collection $\{A_1, A_2, \ldots, A_{k-1}\}$ is not pairwise disjoint. The contradiction shows $L \neq \emptyset$.

Suppose there exists $i_1, i_2 \in L$ with $i_1 \neq i_2$ such that $j_{i_1} = j_{i_2}$. Then A_{i_1} and A_{i_2} are both elements of $F_{i_1}^{\infty}$ and by $(s_4), \ A_{i_1} \cap A_{i_2} \neq \emptyset$. The contradiction shows card $L = \operatorname{card} K$. Since each $A_i \in \alpha - F_1^{\infty}$, we have $1 \notin K$, i.e. $\operatorname{card} K \leq k-2$.

If we define $M = \{1, 2, ..., k-1\}$, we have $M - L \neq \emptyset$. Let $j \in M - L$; then A_j intersects a distinct pair of $\{\bigcap F_1^{\infty}, \bigcap F_2^{\infty}, ..., \bigcap F_{k-1}^{\infty}\}$, say $\bigcap F_{j_1}^{\infty}$

and $\bigcap F_{j_2}^{\infty}$ with $j_1 \neq j_2$. Then j_1 and j_2 are not in K, i.e. $\operatorname{card}(M-K) \geq 2$. Since $\operatorname{card} L = \operatorname{card} K$, we have $\operatorname{card}(M-L) = \operatorname{card}(M-K) \geq 2$. Then $\{A_i | i \in M-L\}$ and $\{\bigcap F_i^{\infty} | i \in M-K\}$ satisfy the hypothesis for Lemma 3. Hence $\{A_i | i \in M-L\}$ is not pairwise disjoint.

Therefore by the induction hypothesis, there is an integer $t\leqslant k-2$ and a decomposition $a-F_1^\infty=a_1\cup a_2\cup\ldots\cup a_t$ where each a_i has the finite intersection property. By (s_4) , F_1^∞ has the finite intersection property and thus $a=F_1^\infty\cup a_1\cup a_2\cup\ldots\cup a_t$ is a decomposition of a into t+1 subcollections each having the finite intersection property and $t+1\leqslant (k-2)+1=k-1$. Thus the theorem is true for n=k. By induction, it is true for all n.

We now return to the proof of Theorem 2. Suppose a is a collection of USC's which satisfies the hypothesis of Theorem 2. Then it is easy to see that a satisfies the hypothesis of Theorem 3 with n = p - q + 2. Therefore Theorem 2 follows as a corollary to Theorem 3.

Furthermore, it is easy to see that the decomposition provided by Theorem 2 is minimal whenever q is maximal, i.e. α satisfies the hypothesis for p, q but not for p, q+1.

In a later paper, it will be shown that if α is a collection of USC's in a Hausdorff space, then α can be partitioned into a finite number of subcollections, each of which have the finite intersection property, if and only if α contains no infinite subcollection whose elements are pairwise disjoint.

REFERENCES

- [1] R. P. Dillworth, A decomposition theorem for partially ordered sets, Annals of Mathematics 51 (1950), p. 161-166.
- [2] W. J. Gray, A fixed point theorem for commuting functions, Canadian Journal of Mathematics 21 (1969), p. 502-504.
- [3] H. Hadwiger und H. DeBrunner, Über eine Variante zum Hellyschen Satz, Archiv der Mathematik 8 (1957), p. 309-313.
- [4] F. A. Valentine, Convex sets, New York 1964, p. 69-73.
- [5] A. D. Wallace, Monotone transformations, Duke Mathematical Journal 5 (1942), p. 487-506.

Reçu par la Rédaction le 26. 4. 1969