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Let X be a topological space and A = X be a continuum. Then 4 is
called a wniversal subcontinuum (USC) of X if A n B is connected for
every continuum B < X. In this paper, we will be concerned with the
problem of decomposing a collection of USC’s into subcollections which
have the finite intersection property. This problem was inspired by Had-
wiger and DeBrunner’s extension [3] of Helly’s theorem [4] for collections
of compact convex subsets of a Euclidean space. Another result which
is similar in statement to, but not directly related to, the main theorem
of this paper is Dilworth’s theorem [1]. We note that universal sub-
continua were originally studied by Wallace [5] under the title “semi-
-chains”.

Gray [2] has essentially shown that an analogous result to Helly’s
theorem holds for a collection of US(C’s in a Hausdorff space.

THEOREM 1 (Gray). Let a be a collection of USC’s in a Hausdorff space.
Then a has the finite intersection property if and only if every pair of elements
of a has a common point. '

We will prove that the following result is valid:

THEOREM 2. Let a be a collection of USC’s in a Hausdorff space. Sup-
pose there exists integers p, q with p > q > 2 such that for every p elements
of a, at least q of them have a common point. Then there exists an integer
t<p—q+1 and a decomposition a = a, U ay, U... Ua, where each a;
has the finite intersection property.

LEMMA 1 (Wallace [56]). The intersection of an arbitrary collection of
USC’s is a USC.

LemMmA 2 (Wallace [5]). Let A and B be USC’s. If A n B #+ @, then
A4 uBisa USC.

LemMMA 3. Let ¥,, F,,..., F, be non-empty pairwise disjoint USC’s.
Let G, @y, ..., G, be non-empty USC’s each of which intersects at least two
distinct F;’s. Then {G,, Q,, ..., Q,} s not pairwise disjoint.
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Proof. The proof is by induction. Consider the case n» = 2 and sup-
pose {@,, G,} is pairwise disjoint. Then by Lemma 2, F, UG, U F, and
F,u@, UF, are USC’s and, by Lemma 1, (F, UG, U F,) n (F, U G,
UF,) is also a USC. But (F, VG, VF,)Nn(F, VG, UF,)=F, UDF,
= F,|F,. The contradiction shows that {@,, G,} is not pairwise disjoint.

We assume the lemma is valid for » = 2,3, ..., k—1; k>3 and
congider the case n = k. Suppose {F,,F,,..., F;} and {G4,G,,...,G}
are pairwise disjoint and each @; intersects at least two distinct F,’s.
Suppose there is an F; for which F; n G; = @ for every j. Then the collec-
tions {F,, ..., F;, ..., F,} and {&4, ..., G, ..., G;} satisfy the hypothesis
for n = k—1. Hence {G,, G, ..., G)} is not pairwise disjoint. The contra-
diction shows that for every F;, there is some G; for which F; n G; # O.

Now suppose that for some F,, there is only one G; for which F; N G;

#@. Then the collections {F,, ..., F;, ..., F};} and {Gy, ..., G, ..., Gy}
satisfy the hypothesis for » = k—1. The contradiction shows each F,;
intersects at least two distinct G;’s.

We may suppose that F, and F, are intersected by G,. Suppose
we have renumbered the F;’s and G;’s such that ¥, , and F; are intersected
by G;_,, 1 =2,3,..,p, where 1 <p < n. Since F, NG, , #0 and
F,_, intersects @G, , and G,_,, we must have F, nG,_, =0 if p >2.
Then by induction, F, N G; = @, ¢ < p—2. Since F, meets two of the G,,
we may assume F, NG, # @. We now find that G, n F; = 0, i <p—1.
Since G, meets two of the F;, we may assume that G, N F,,, # @. This
proves that we may assume that G, intersects ¥; and ¥, ,, ¢ =1, 2, ...
..., n—1. Suppose G, meets F;, j < n. Since F; and F; , are intersected
by G;, G, N F;,, = @. Then by induction, G, N F;, =3, ¢ > j. Likewise
G, N F, =0, i <j. This contradiction proves the lemma.

THEOREM 3. Let a be a collection of non-empty USC’s of a Hausdorff
space. Suppose there is an integer n > 2 such that for every n elements of a,
at least two have a common point. Then there is an integer t < n—1 and
a decomposilion a = a; U a, U ... U a, where each a; has the finite inter-
section property. -

Proof. The proof is by induction. Theorem 1 shows that the theorem
is true for n = 2. Suppose that the theorem is true for » =2, 3,...
..., k—1; k>3 and assume a is a collection of USC’s satisfying the
hypothesis for n = k. We assume further that a does not have the required
decomposition.

Then o has a subcollection {F,,F,,..., F,_,} which is pairwise
disjoint; otherwise a satisfies the hypothesis for » = k—1. We make
the following definitions:

(a) Let y be a subcollection of a. We will use the notation (M) y to
indicate () H.
Hey
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(b) Fori < k—1, let F} = {F;}.
For i <k—1, p>1 define F? by

F? = {Hea| H n [N F?7'] # O if and only if ¢+ = j} v FP~%
(¢) For ¢ < k—1, define F;° by F;° = UoFg’.
p=

We now prove that the following statements are valid:

(s,) For every i <k—1, F} c Fic F:c

(s;) For every i<k—1, N F'> N F; > ﬂ Fio>

(s3) For every 1 < k—1 and every p > 0, F? has the finite intersection
property.

(s4) For every 1 < k—1, F;° has the finite intersection property.

(s5) For every H ea, there is some i < k—1 such that HN[() F]+# 9.

(s¢) Let Hea; suppose there ewists i < k—1suchthat H n [N F?] # O
if and only if © = j. Then HeFY.

Proof of (s,). This is an immediate consequence of the definitions.

Proof of (s,). This is an obvious consequence of (s,).

Proof of (s4). The proof is by induction. For each ¢, F? consists of
a single non-empty USC and thus has the finite intersection property.
Let ¢ be fixed and consider H, GeF; . Then the subcollection {H, @Q, F,,

Fy, ..., 17’2-, .oy F,_1} is a collection of %k elements and thus H Nn G # O,
i.e. F; has the finite intersection property. Suppose F? has the finite
intersection property for p =0,1,2,...,m—1; m > 2. Suppose H,@G
el such that H NG = 0. Let

Ly ={j<k—1|j #4¢ and H N F; # O},
Ky={j<k—1]j #14 and G N F; # O}.

If Ly = 9, then HeF; and G N H # Q. Similarly, if K, = @, then
GeF; and G N H # @. Now suppose L, N K, # @ and let jeL, N K,.
Then F; and F; are disjoint USC’s intersected by ¢ and H and thus
G N H.# @. The contradiction shows L, N K, = .

Since H,GeF7*, for every j # ¢ we have

HA[NF'1=0=6n[NF].

Then for every jeL, there is some integer ¢; with 0 < ¢, <m—2
such that

Hn[NF¥] #0 =H n [ Fit'].

Similarly, for every je¢ K, there is some integer ¢; with 0 < ¢; < m -2
such that

G N[N F¥] 0 =G n [N Fo+].



236 W.T. TROTTER

Therefore for every j e L,, there exists A} e F#*! such that H N A} = @.
Similarly for every jeK,, there exists B} ¢F#*! such that @ N B; = @.

We now show that the collection {H, G} U {AY| jeL,} U {Bj jeK,}
is pairwise disjoint. We already have:

(t,) H nG@ = 9.

(t;) H N A} = O for every jeL,.

(ts) G N B) = O for every jeK,.

It remains to show that:

(ta) @ N A} = O for every jeL,.

(t ) H N B} =@ for every jeK,.

(t) 47 N A° = O for every j,, joe Ly with j, # j,-

(t,) B° nB° = @ for every j,,jse Ko with j, # j,.

(tg) A° r\B° =@ for every jieL, and for every j,eK,.

Suppose G N A} # O for some jeL,. Since AjeFfit!,

A AN FY] 0 = 43 0 [N FH).

Therefore A} U [ F¥] and () F¥ are disjoint USC’s intersected
by H and @G. The contradiction proves (t,). The proof of (t;) is similar.

Now suppose ji,jseLy,ji #j, and A} N A} # @. Then Aj U A}
is a USC and H N [4] U 4] ] = O. But ﬂ Fq’l and N Fqu are dlsJomt
USC’s intersected by H and A} L A7 The contradiction proves (t,).
The proof of (t,) is similar.

Suppose jieL,, jeK, and A4} N B} #@. Then {47 U [N Finl}
U {B}, V[N Fj2]} and N Fp are dlsmmt USC’s intersected by H
and G The contradlctlon proves (tg).

Let H, and @, be defined by

H,=HvU {4; v [N Fyl},

fELo

G, =G vl {B] v[N F¥#l}.

jeK,
Then it is obvious that H, and G, are USC’s. We prove that they
are disjoint. We need to show:
(to) 47 N[N Ff;z] =@ for every j,eL, and for every j,eK,.
(t10) B}, N[N Fi2] = O for every jieK, and for every jyeL,.
Suppose ji e Ly, j.e K, and 49 N[ Fj2] # @. Then F; U 4} U F,;,
and F; are disjoint USC’s intersected by G and H. The contradiction
proves (ty). The proof of (t,,) is similar. Thus H, n G, = O.
Define L, and K, as follows:
={j<k—1|j #1¢ and H, N F; # @},
K, ={]<k—1|j # ¢ and G, N F; # @}.
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It is obvious that L, = L, and Ky < K,. Since H, and @, are disjoint,
we have L, N K, = 3. Suppose L,— L, =0 = K,— K,. Then

{H,G} U {4j] jeLo} U {Bj| jeKo} U {F;| j¢L, U Ko, j # i}

is a collection of k£ pairwise disjoint elements of a.

The contradiction shows that at least one of L,— L, and K,— K,
is non-empty. We now repeat the process in the following manner.

For every jeL,— L,, there is some integer ¢; with 0 < ¢;<m—3
such that , a;

H1 N [ﬂ F?’] #+0 = H1 N [ﬂ F1]+1]-
Similarly for every jeK,— K, there is some integer g; with 0 < ¢; <m—3
such that , .
G N[N Fi]+#0 =G, n[N F/].

Therefore for every je L, — L, there exists 4;eF; T+ such that H, N A;
= @. Similarly, for every jeK,— K, there ex1sts B;je F 7+1 such that
G, N B; = 0.

As before, the collection

{HuGl} U {4j| jeL,— Lo} U {Bj| jeK,— K}
is pairwise disjoint. We define
H,=H, UL {4; VN FfiB),
jely—Ly

G,=6G,v( U Bju[N F¥}).

Then @, and H, are disjoint USC’s. We define L, and K, by

L, ={j<k—-1|j #¢,H, N F; # O}
and
K, ={j<k—1lj #1,G, N F; # B}.

Then Lyc L,c L,;Kyc K, K;; and L,nK, =0. If L,—L,
=0 =K,—K,, then

{H, G} U {4j]jeLe} U {4jljeL,— Lo} U {Bj|j<K,}
U {BjljeK,— Ko} U {F;|j #1,j¢L, U K,}

is a collection of k pairwise disjoint elements of a. The contradiction
shows at least one of L,— L, and K,— K, is non-empty.

This argument may be repeated to obtain sequences L, and K, which
satisfy the following conditions:

(a) L,={1,2,...,k—1}; r> 0,

(b) K, < {1,2,...,k—1}; r> 0,

() Lyc Ly, K, c K, ,; r>0,

(d) L,nK, =9; r>=0.
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If >0 and L, ,— L,=@=K,+1—K then
{H,G} v {dj|jeLe} v {4]ljel;— L, 31<t<r}
U {BjljeKo} U {BjljeK,— K, ;;1< 1‘} UA{F|j #1,j¢L, U K,}

is a collection of k pairwise disjomt-elements of a. The contradiction shows
at least one of L, , — L, and K,.,, — K, is non-empty.

It is clear that no such sequences L, and K, can exist. Thus the ori-
ginal assumption that H N G = @ must be false, i.e. H NG # @ and F}"
has the finite intersection property.

Proof of (s,). Let i < k—1 and H, GeF°. Then there exist integers
P, q such that HeF? and GeF?. Then by (8,), HeFP*? and GeFP™? and
since F?7? has the finite intersection property, H N G # @. Thus F7 has
the finite intersection property.

Proof of (s;). Let Hea. Suppose H N [() F°] = D for every ¢t < k 1.
Then for each 7, there exists G, ¢ F;° such that H N G; = Q. And for each ¢
there exists an integer pi such that G, eF;. Hence H N [ F’-’i] = @ for

every i < k—1. Let p = 21’; Then H N [() F?] = @ forevery i< k—1.

We now show that for every Hea and for every integer p > 0, there is
some ¢ << k—1 such that H n [ F?] # 9.

The remainder of the proof of (s;) is similar to the argument used in
proving (s;) and thus will be omitted.

Proof of (s¢). For every j # 4, there exists A;¢F;° such that H n 4;
= . Then for each j +# 4, there exists an integer p; > 0 such that A;¢F7/.
Let p = Y p;. Then H n [N F?] = @ for each j # i and thus H ¢ F?P*!

#i
and hencye HeFP.

We now show that a — F{° satisfies the hypothesis for n = k¥ —1, i.e.
for every k—1 elements of a— F{°, at least two have a common point.
Let A,,4,,..., A;_ea— F7. Suppose that {4,, 4,,..., A;_,} is pairwise
disjoint.

Let L = {i < k—1| There exists j,<k—1 such that A4, ;e Fy} and
if L #0, let K = {j;|/ieL}. Suppose L = @. Then by (s;), for each A;
there is some j such that 4; N [ F;°] # @. Then by (s,) each A, intersects
at least two distinct elements of the pairwise disjoint collection {(M) F{°,
N FZ, ..., ) Fy_,}. Then by Lemma 3, the collection {4,, 4,,..., 4;_,}
is not pairwise disjoint. The contradiction shows L # @.

‘Suppose there exists 4,, ¢;eL with 4, # i, such that Ji, = Ji,» Then
4; and A are both elements of F°° and by (8,), A nA # Q. The con-
tradiction shows card L = card K. Since each Ajea— Fl, we have 1¢K,
ie. card K < k—2. .

If we define M = {1,2,...,k—1}, wehave M — L + @. Let jeM — L;
then A, intersects a distinct pair of {() F'7°, M FY,..., N F,},say (N F'
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and () ¥ with j, # j,. Then j, and j, are not in K, i.e. card(M — K)
> 2. Since card L = card K, we have card(M — L) = card(M — K) > 2.
Then {4, ieM — L} and {() F°|¢eM — K} satisfy the hypothesis for
Lemma 3. Hence {A4;|ieM — L} is not pairwise disjoint.

Therefore by the induction hypothesis, there is an integer ¢t < k —2
and a decomposition a—F = a; Ua, U... Ua, where each a; has the
finite intersection property. By (s,), F';° has the finite intersection prop-
erty and thus a = F? Vg, Va, U... Uq is a decomposition of a into
t+1 subcollections each having the finite intersection property and
t+1<(k—2)+1=k—1. Thus the theorem is true for » = k. By induec-
tion, it is true for all n.

We now return to the proof of Theorem 2. Suppose a is a collection
of USC’s which satisfies the hypothesis of Theorem 2. Then it is easy
to see that a satisfies the hypothesis of Theorem 3 with n = p—q+2.
Therefore Theorem 2 follows as a corollary to Theorem 3.

Furthermore, it is easy to see that the decomposition provided by
Theorem 2 is minimal whenever ¢ is maximal, i.e. a satisfies the hypo-
thesis for p, ¢ but not for p, q-+1.

In a later paper, it will be shown that if a is a collection of USC’s
in a Hausdorff space, then o can be partitioned into a finite number of
subcollections, each of which have the finite intersection property, if
and only if « contains no infinite subcollection whose elements are pairwise
disjoint.
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