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§0. Introducticn.

In this paper, we shall prove that every recursive interval
order of width w can be covered by 3w-2? recursive chains.
To establish thatthis result is best possible, we show that
there exists a recursive interval order of width w that cannot
be covered by 3(w-1) recursive chains. Before discussing the
significance of these theorems, we pause to remind the reader of
some of the fundamental definitions in recursive conbinatorics.
A function f:Nk + N, where N 1is the set of natural numbers,
is recursive iff there exists an algorithm (i.e., a finite com-
Puter program) which upon input of a sequence of length k of

natural numbers n, outputs f(n) after a finite number of

k

steps. A subset of N, (i.e., a k-ary relation) is recursive

provided that its characteristic function is recursive. TFor a

more formal treatment of recursive functions and recursive
 relations see [R1. A partial order P = (P,<) is recursive
 provided that P 1is a recursive set and < is a recursive
é relation. Similarly a graph 6 = (V,E) is recursive provided
| that V is a recursive set and E is a recursive relation.
F 6 is recursively k-colorable iff there is a k-coloring of G

that is a recursive function. A partial order P = (P,<) is

an interval order iff P is isomorphic to a partial order

%
I'=(I,s«) such that I is a set of intervals of the real
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line and for all 1i,3e¢XI, i <« 3 1iff the right end point of
i is less than the left end point of Jj. The incomparability
graph of a interval order is an interval graph. P is a recursive

interval order iff P is a recursive partial order which is also

an interval order. Recursive interval graphs are defined analo-~
gously.

One of the attracticns of finite combinatorics is the explicit
descriptions of the objects under consideration. These explicit
descriptions are usually lost when one passes to infinite combina-
torics. For example consider the case of the infinite version
of Dilworth's Theorem [D]. When one proves that every infinite
partial order of finite width w can be covered by w chains
the proof does not provide a description of these chains, it
merely demonstrates their existence. The main results of this
paper are part of a program to extend the domain of finite
combinatorics to recursive objects. While these objects are
generally infinite, they are explicitly described by the algo-
rithms associated with them. While we can not hope to assim-
ilate the total amount of information about an infinite structure
that is in some sense stored in the finite algorithm that describes
it, we certainly have complete information about any finite part
of the structure. A similar situation exists even in finite
combinatorics when one tries to comprehend a very large and
complicated graph, but can really only understand small subgraphs

of it.
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Kierstead [X] proved that every recursive partial order of

w
width w can be covered by 5“'1 recursive chains and there

is a recursive partial order of width w that cannot be covered
by 4(w-1) recursive chains. The latter part of this result
explains why proofs of the infinite version of Dilworth's Theorem
do not give explicit descriptions of the coverings. The first
part shows that not all is lost. We can still explicitly describe
coverings if we are allowed to use additional chains. There is a
disturbing gap between u4{w-1) and é;:l - The main result of
this paper closes that gap for the class of interval orders.
The proof actually shows the stronger result that every recursive
interval graph G whose clique number is (€) can be recursively
GuﬁG)—?}colored. The recursive chromatic number of graphs is dis-
cussed in papers by Bean I{Bl, Schmerl [S13, {813, and Kierstead [K1.
Support for the thesis that recursive combinatorics is a
natural extension of finite combinatorics comes from the experience
that the arguments used to prove theorems have the flavor and style
of arguments used in finite combinatorics. To prove that a recur-
sive partial order can be covered by m recursive chains, one
must produce an algorithm that provides these chains. Each time
the algorithm makes a (irrevocable) decision about the chain into
which an element of the partial order is to be inserted, it must
base this decision on a finite amount of information about the
partial order. The problem of constructing a recursive partial
order that cannot be covered by m recursive chains requires

somewhat more sophistication. One must be sure that no algorithm
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produces a set of m chains that covers the partial order.
Lemma 1 reduces this recursion theoretical problem to a strictly
combinatorial problem. The reduction requires the following

definition.

Definition.0 Let G(m,w) be the following infinite game for
two players X and Y. At his k+1lst +turn, X will have
constructed a finite interval order P = (P,<) of width at

most w. Y will have covered this interval order by m sets.
X makes his k+lst play by extending his interval order to

cne new element so that the width remains at most w. Y then
makes his k+1st play by adding this new element to exactly one
of the sets in his covering. If at the end of w (the first
infinite ordinal) plays, each of the m sets in Y's covering

is a chain, then Y wins; otherwise X wins. |

Lemma 1. If X has a winning strategy for the game G(m,w),
then there exists a recursive interval order of width w that

cannot be covered by m recursive chains.

Sketch of Proof. (See [K] for additional details.) If X

has a winning strategy S for the game G(m,w), then there
exists a finite s such that X can always be assured of
winning after s plays. Thus S is essentially finite and

thus recursive. The set of algorithms is countable; moreover

it can be effectively listed. Our idea is to construct an inter-
val order with infinitely many distinct parts such that the ith

algorithm does not even provide a cover of the ith part of the
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interval order by m chains. Roughly speaking, we do this by
using the recursive strategy S to play the game G(m,w) against
the ith algorithm. 0

The reader may notice that our proof of Theorem § provides
a winning strategy for Y in the game G(3w-2, w). The problem
of which player has a winning strategy for the game G{m,w)

seems to have interest of its own.

Notation. Let P = (P,<) be a partial order. The width of
P is denoted by w(P). If x,yeP and x is incomparable to
y, we write x||y. If x is comparable to y we write x<>y.
If xe¢P, AcP, and for all acA, al|lx we write x|]A. 1If

pe P then

{D(p) = {qeP: gq<p} and U(p) = {qe P: p<q}

Let BeN. The set {beB: b<p in N} 1is denoted by BP. If

G = (V,E) 1is a graph, then the maximum size of a complete sub-

graph of G 1is dencted w(G), and is called the clique number

of 6.

§1. The Main Results
We begin with some basic properties of interval orders.

Lemma 2. (Fishburn [F1): P is an interval order iff P 1is a
partial order which does not have a suborder isomorphic to

2+2. O
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Definition 3. Let P = (P,<) be a partial order and let
S,Tc P be antichains. S=T iff for every se S there exists

teT such that s=t. g

Lemma 4. If P = (P,<) is an interval order and S,TcP are

maximal antichains, then S<T or T=sS.

Proof. Suppose that not S5=T. Then for some se S and
every teT not s=t. Since T is maximal there exists teT
such that s<>t. Thus t<s. Now suppose that not Ts<S. Then
again there exist s'e S and t'e T such that s'< t'. Since
S and T avre antichains, s'#s and t'# t. Thus s}||s'
and t|]t'. But then the suborder ({s,t,t’ ,s'} 1is isomorphic

to 2 + 2, which contradicts the hypothesis that p 1s an

interval order. K]

Thec;rem 5. If P = (P,$) is a recursive interval order of width

w then P can be covered by 3w-2 recursive chains.

Proof. We argue by induction on w. If w =1 then P
itself is a chain. So suppose w = k+l. Define B inductively
by B = {peP: w(BP u {p}) £ x}. B is a maximum suborder of 7P
of width Xk and B 1is recursive since P is recursive. Let
A = P-B. A also is recursive. By the inductive hypothesis, B can be
covered by 3k-2 recursive chains. Thus it suffices to show that A can
be covered by three recursive chains. This will be accomplished by proving
that each element of A is incomparable to at most two other elements of A.

Then surely the greedy algorithm provides a covering of A by three recur-

sive chains.
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We begin by showing that the width of A is at most two.
Consider three distinct elements Q,r,S€ A. Then there exist
antichains Q,R,ScB of width k such that allQ, r!|R, anad
s||s. Without loss of generality Q=<Rs<S. Suppose r{|q and
r{|s. We shall show that g<s. Since gql|r and w(P) <k+1,
there exists pr'e¢R such that q<>r'. Since ql|Q, r'¢Qq.
Since w(B) £k, there exists q' € Q@ such that q' <>r'. Since
Q< R, there exists Ty e R such that q'< ry- Thus since R is
an antichain q'sr'. Since aliq’, asr'. Similarly,
there exists r"e¢ R such that "< S. Since P does not have
any suborder isomorphic to 2+ 2, we may choose r' = p",

Thus q <¢s.

Now suppose gq,r,s, and t are distinct elements of A such
that q||{r,s,t}. Then without loss of generality r<s«<t.

Since se A there exists an antichain S$c<B of length Xk such
that s[|S. Since s||q and w(P)z« k+1l, q 1is comparable to

some element s'eS. If s'<q, then s'||[r and the suborder
{s',q,r,s} is isomorphic to 2 + 2, which contradicts the hvpothesis
that P is an interval order. Similarly if q<s', then s' |t
and the suborder {q,s',s,t} is isomorphic to 2+ 2. O

Notice that the algorithm, implicit in the above proof, for
covering P by recursive chains uses cnly information about the
comparability of various elements of P, not their order. Thus
if the incomparability graph of an interval order P is recursive,

then P can be covered by 3w(P)-2 recursive chains. Thus we

have actually proved the following stronger theorem.
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Theorem 6. I1If 6 is a recursive interval graph then G can

be pecursively 3w(G)-2 colored.

Theorem 7. For every positive integer w there exists a recur-
sive interval order of width w that cannot be covered by 3(w-1)

recursive chains.

Proof. By Lemma 1 it suffices to show that X has a winning
strategy for the game G(3(w-1),w). We argue by induction on w.
Clearly Y cannot win G(0,1). We illustrate the inductive step
of the proof by first considering the case w = 2. We must pro-
vide a winning strategy for X in the game G(3,2).

¥ starts the game by creating a linear order of length
3.3 +4 1= 10. Y is forced to put four of these points into the
same chain, say bl’ bz, ba, bue C1 and bi< b2< b3< bu. Now
X plays two points d4 and d, such that d,< d,> di|$bi,
U(di) = U(bi) and D(di) = D(bi) for i = 1,4. This is

illustrated in Figure A.

bu du bq
b3 1 b3
b2 1 b2
b1 dl bl
Fig. A Fig. B
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The loops represent possibly empty chains. The number next to
a point is the chain into which Y Hhas put the point. Clearly

P is still an interval order of width 2. Y cannot put d. or

i
d, into Cl. First suppose that Y puts d1 into C2 and
da, into C3 where C, and 03 are distinet new chains. Then
X plays d2 such that s« d2 iff s« b1 and d2< t iff

bu £t. This is illustrated in Figure B. P still is an interval

order of width 2, but Y cannot put d into Cl’ CZ’ or C

2 3
since d2||b2, dzjldl, and d2||du. If instead Y decides to put
dl and d2 into the same new chain CZ’ then X plays two
more points d2 and d3 such that s< di iff s=<b
di<t iff bi<t and not t<d

i-1 and

1+1° for i = 2,3. This is
illustrated in Figure C. Again P is an interval order of width
two. Y cannot put d, and d3 into the same chain since d2||d3.

Also Y cannot put either d2 oy d3 into C1 or 02 since

dillbi for i = 2,3, d2{|d1, and d,[fd,. Thus X wins.

Now suppose w = k+1. We must exhibit a winning strategy
for X in the game G(3w, wil). By the inductive hypothesis X
has a winniﬂg Etrategy S for the game G(3(w-1),w). X should

start the game G(3w, w+l) by using S to build a chain of

(3w

suborders Bi,Os 1<3 3(w—1))

+ 1, such that

i) each Bi is an interval order of width w3

i) if xe Bi’ Ve Bj, and i<j then Xx«<y;

1ii) Y 1is forced to use 3w-2 chains to cover each Bj.
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There must be 3w-2 <chains Cl”"’c3w—2 and four suborders

B. ,...4B. such that C.nB. # B for 1x<3j=3w-2 and
1 Ty I
1<ksk. X rplays the rest of the game as before but with the

suborders Bi taking the part of the points bk' Y will be
Kk
forced to put the elements d, into new chains and will require

three new chains. However only two new chains are available.
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