We have so far discussed isolated singularities of holomorphic functions in the complex plane. In this note, we extend the study to the case where $z = \infty$ is an isolated singularity.

Definition (Isolated Singularity at Infinity): The point at infinity $z = \infty$ is called an *isolated singularity* of f(z) if f(z) is holomorphic in the exterior of a disk $\{z \in \mathbb{C} : |z| > R\}$.

This is quite natural, since through the stereographic projection the region $\{z \in \mathbb{C} : |z| > R\}$ corresponds to a punctured disk on the sphere centered at the north pole.

Notice also that $z = \infty$ is an isolated singularity of f(z) if and only if z = 0 is an isolated insgularity of f(1/z). Furthermore, we use the following definitions to classify the singularities at $z = \infty$.

Definition (Classifications): Let $z = \infty$ be an isolated singularity of f(z).

(a) f(z) has a removable singularity at $z = \infty$ if f(1/z) has a removable singularity at z = 0.

(b) f(z) has a pole of order $m \ge 1$ at $z = \infty$ if f(1/z) has a pole of order $m \ge 1$ at z = 0.

(c) f(z) has an essential singularity at $z = \infty$ if f(1/z) has an essential singularity at z = 0.

Proposition (Laurent Series): We easily obtain the following results:

(a) If $z = \infty$ is an isolated singularity of f(z), then

$$f(z) = \sum_{n=-\infty}^{\infty} a_n z^n \quad (|z| > R),$$

where R is a positive number.

(b) If $z = \infty$ is a removable singularity of f(z), then $a_n = 0$ for all n > 0:

$$f(z) = \sum_{n=-\infty}^{0} a_n z^n \quad (|z| > R).$$

(c) If $z = \infty$ is a pole of order $m \ge 1$ of f(z), then $a_m \ne 0$ and $a_n = 0$ for all n > m:

$$f(z) = \sum_{n=-\infty}^{m} a_n z^n \quad (|z| > R).$$

(d) If $z = \infty$ is an essential singularity of f(z), then $a_n \neq 0$ for infinitely many positive integers n.

Definition (Zero at Infinity): It is also natural to call $z = \infty$ a zero of multiplicity $m \ge 1$ of f(z) if f(1/z) can be extended to a holomorphic function g(z) on a disk $B(0, \delta)$ and z = 0 is a zero of multiplicity m of g(z).

An equivalent condition is: In the above Laurent series expansion near $z = \infty$, $a_{-m} \neq 0$ and $a_n = 0$ for all n > -m:

$$f(z) = \sum_{n=-\infty}^{-m} a_n z^n \quad (|z| > R).$$

Theorem (Entire Functions Behaving Good at Infinity are Polynomials): Let f(z)

be an entire function (that is, f(z) is holomorphic in the entire complex plane \mathbb{C}).

- (a) If $z = \infty$ is a removable singularity of f(z), then f(z) is a constant.
- (b) If $z = \infty$ is a pole of order $m \ge 1$ of f(z), then f(z) is a polynomial of degree m.

Definition (Transcendental Entire Functions): An entire function f(z) is called a *transcendental entire function* if $z = \infty$ is an essential singularity of f(z). In view of the above theorem, a transcendental entire function is an entire function that is not a polynomial.

Examples: (i) $\cos z$, (ii) $\sin(\pi z)$, (iii) e^{-z^2} are transcendental entire functions. There are other important and more sophicated examples: (iv) the Bessel function of the first kind of order $k \ge 0$:

$$J_k(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(n+k)!} \left(\frac{z}{2}\right)^{2n+k}$$

(v) $(z - 1)\zeta(z)$, where $\zeta(z)$ is the Riemann zeta function which we will discuss later in the course.

Definition (Meromorphic Functions): Let $G \subset \mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}$ be open in \mathbb{C}_{∞} . A function f is said to be *meromorphic* in G if it is defined and holomorphic in G except for isolated singularities and all isolated singularities are either removable or poles.

The previous theorem can now be rephrased as: If f is meromorphic in \mathbb{C}_{∞} and has no poles in \mathbb{C} , then it must be a polynomial.

Rational Functions: Let f(z) = P(z)/Q(z) where P(z) and $Q(z) \neq 0$ are polynomials of degree *m* and *n* respectively. It is easy to see that f(z) is meromorphic in \mathbb{C}_{∞} . Moreover,

 $\begin{cases} z = \infty \text{ is a zero of order } n - m \text{ of } f(z) \text{ if } n > m; \\ z = \infty \text{ is a removable singularity of } f(z) \text{ if } n = m; \\ z = \infty \text{ is a pole of order } m - n \text{ of } f(z) \text{ if } n < m. \end{cases}$

Conversely, we have the following:

Theorem (Meromorphic Functions on \mathbb{C}_{∞}):

If f(z) is a meromorphic function on \mathbb{C}_{∞} , then f(z) is a rational function of z.

Definition (Transcendental Meromorphic Functions): A function f(z) is called a *transcendental meromorphic function* if it is meromorphic in \mathbb{C} and is not a rational function. The above theorem above that if f(z) is a transcendental meromorphic function, then

The above theorem shows that if f(z) is a transcendental meromorphic function, then

either (a) f(z) has at most a finite number of poles in \mathbb{C} and has an essential singularity at $z = \infty$;

or (b) there are an infinite number of poles z_n of f(z) accumulating at infinity: $z_n \to \infty$.

Examples: $e^z/(1+z^2)$, $1/\sin z$, and $\Gamma(z)$ are transcendental meromorphic functions. $e^z/(1+z^2)$ satisfies (a).

 $1/\sin z$ satisfies (b).

The gamma function $\Gamma(z)$, which will be studied later in the course, exhibits behavior (b). It has simple poles at negative integers z = -1, -2, ...

Exercise:

- 1. Prove all claims in this note.
- 2. Let R(z) be a rational function of z and assume $R(z) \neq 0$. Show that the number of zeros of R(z) in \mathbb{C}_{∞} equals the number of poles of R(z) in \mathbb{C}_{∞} . Here, zeros and poles are counted repeatedly according to their multiplicities and orders.
- 3. Suppose that f(z) is holomorphic in |z| > R. We have seen that f can be expanded into the Laurent series:

$$f(z) = \sum_{n=-\infty}^{\infty} a_n z^n \quad (|z| > R).$$

Define the residue of f at $z = \infty$ by:

$$\operatorname{Res}(f;\infty) = -a_{-1}.$$

Notice that even when $z = \infty$ is a removable singularity of f(z), it is possible that $\operatorname{Res}(f; \infty) \neq 0$.

- (a) Show that $\operatorname{Res}(f;\infty)$ equals the residue of $-z^{-2}f(1/z)$ at z=0.
- (b) Show that

$$\operatorname{Res}(f; \infty) = -\frac{1}{2\pi i} \int_{|z|=r} f(z) dz \quad (R < r < \infty),$$

where the circle |z| = r is oriented counterclockwise.

(c) Let f be holomorphic in \mathbb{C} except for a finite number of isolated singularities $z_1, ..., z_n \in \mathbb{C}$. Show that

 $\operatorname{Res}(f; z_1) + \dots + \operatorname{Res}(f; z_n) + \operatorname{Res}(f; \infty) = 0.$