Infinity as an Isolated Singularity

We have so far discussed isolated singularities of holomorphic functions in the complex plane. In this note, we extend the study to the case where $z=\infty$ is an isolated singularity.
Definition (Isolated Singularity at Infinity): The point at infinity $z=\infty$ is called an isolated singularity of $f(z)$ if $f(z)$ is holomorphic in the exterior of a disk $\{z \in \mathbb{C}:|z|>R\}$.

This is quite natural, since through the stereographic projection the region $\{z \in \mathbb{C}:|z|>R\}$ corresponds to a punctured disk on the sphere centered at the north pole.

Notice also that $z=\infty$ is an isolated singularity of $f(z)$ if and only if $z=0$ is an isolated insgularity of $f(1 / z)$. Furthermore, we use the following definitions to classify the singularities at $z=\infty$.

Definition (Classifications): Let $z=\infty$ be an isolated singularity of $f(z)$.
(a) $f(z)$ has a removable singularity at $z=\infty$ if $f(1 / z)$ has a removable singularity at $z=0$.
(b) $f(z)$ has a pole of order $m \geq 1$ at $z=\infty$ if $f(1 / z)$ has a pole of order $m \geq 1$ at $z=0$.
(c) $f(z)$ has an essential singularity at $z=\infty$ if $f(1 / z)$ has an essential singularity at $z=0$.

Proposition (Laurent Series): We easily obtain the following results:
(a) If $z=\infty$ is an isolated singularity of $f(z)$, then

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n} \quad(|z|>R)
$$

where R is a positive number.
(b) If $z=\infty$ is a removable singularity of $f(z)$, then $a_{n}=0$ for all $n>0$:

$$
f(z)=\sum_{n=-\infty}^{0} a_{n} z^{n} \quad(|z|>R)
$$

(c) If $z=\infty$ is a pole of order $m \geq 1$ of $f(z)$, then $a_{m} \neq 0$ and $a_{n}=0$ for all $n>m$:

$$
f(z)=\sum_{n=-\infty}^{m} a_{n} z^{n} \quad(|z|>R)
$$

(d) If $z=\infty$ is an essential singularity of $f(z)$, then $a_{n} \neq 0$ for infinitely many positive integers n.
Definition (Zero at Infinity): It is also natural to call $z=\infty$ a zero of multiplicity $m \geq 1$ of $f(z)$ if $f(1 / z)$ can be extended to a holomorphic function $g(z)$ on a disk $B(0, \delta)$ and $z=0$ is a zero of multiplicity m of $g(z)$.

An equivalent condition is: In the above Laurent series expansion near $z=\infty, a_{-m} \neq 0$ and $a_{n}=0$ for all $n>-m$:

$$
f(z)=\sum_{n=-\infty}^{-m} a_{n} z^{n} \quad(|z|>R)
$$

Theorem (Entire Functions Behaving Good at Infinity are Polynomials): Let f(z) be an entire function (that is, $f(z)$ is holomorphic in the entire complex plane \mathbb{C}).
(a) If $z=\infty$ is a removable singularity of $f(z)$, then $f(z)$ is a constant.
(b) If $z=\infty$ is a pole of order $m \geq 1$ of $f(z)$, then $f(z)$ is a polynomial of degree m.

Definition (Transcendental Entire Functions): An entire function $f(z)$ is called a transcendental entire function if $z=\infty$ is an essential singularity of $f(z)$. In view of the above theorem, a transcendental entire function is an entire function that is not a polynomial.

Examples: (i) $\cos z$, (ii) $\sin (\pi z)$, (iii) $e^{-z^{2}}$ are transcendental entire functions. There are other important and more sophicated examples: (iv) the Bessel function of the first kind of order $k \geq 0$:

$$
J_{k}(z)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(n+k)!}\left(\frac{z}{2}\right)^{2 n+k},
$$

(v) $(z-1) \zeta(z)$, where $\zeta(z)$ is the Riemann zeta function which we will discuss later in the course.
Definition (Meromorphic Functions): Let $G \subset \mathbb{C}_{\infty}=\mathbb{C} \cup\{\infty\}$ be open in \mathbb{C}_{∞}. A function f is said to be meromorphic in G if it is defined and holomorphic in G except for isolated singularities and all isolated singularities are either removable or poles.

The previous theorem can now be rephrased as: If f is meromorphic in \mathbb{C}_{∞} and has no poles in \mathbb{C}, then it must be a polynomial.
Rational Functions: Let $f(z)=P(z) / Q(z)$ where $P(z)$ and $Q(z) \not \equiv 0$ are polynomials of degree m and n respectively. It is easy to see that $f(z)$ is meromorphic in \mathbb{C}_{∞}. Moreover,

$$
\left\{\begin{array}{l}
z=\infty \text { is a zero of order } n-m \text { of } f(z) \text { if } n>m ; \\
z=\infty \text { is a removable singularity of } f(z) \text { if } n=m \\
z=\infty \text { is a pole of order } m-n \text { of } f(z) \text { if } n<m
\end{array}\right.
$$

Conversely, we have the following:
Theorem (Meromorphic Functions on \mathbb{C}_{∞}):
If $f(z)$ is a meromorphic function on \mathbb{C}_{∞}, then $f(z)$ is a rational function of z.
Definition (Transcendental Meromorphic Functions): A function $f(z)$ is called a transcendental meromorphic function if it is meromorphic in \mathbb{C} and is not a rational function.

The above theorem shows that if $f(z)$ is a transcendental meromorphic function, then
either (a) $f(z)$ has at most a finite number of poles in \mathbb{C} and has an essential singularity at $z=\infty$;
or (b) there are an infinite number of poles z_{n} of $f(z)$ accumulating at infinity: $z_{n} \rightarrow \infty$.

Examples: $e^{z} /\left(1+z^{2}\right), 1 / \sin z$, and $\Gamma(z)$ are transcendental meromorphic functions.
$e^{z} /\left(1+z^{2}\right)$ satisfies (a).
$1 / \sin z$ satisfies (b).
The gamma function $\Gamma(z)$, which will be studied later in the course, exhibits behavior (b). It has simple poles at negative integers $z=-1,-2, \ldots$

Exercise:

1. Prove all claims in this note.
2. Let $R(z)$ be a rational function of z and assume $R(z) \not \equiv 0$. Show that the number of zeros of $R(z)$ in \mathbb{C}_{∞} equals the number of poles of $R(z)$ in \mathbb{C}_{∞}. Here, zeros and poles are counted repeatedly according to their multiplicities and orders.
3. Suppose that $f(z)$ is holomorphic in $|z|>R$. We have seen that f can be expanded into the Laurent series:

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n} \quad(|z|>R) .
$$

Define the residue of f at $z=\infty$ by:

$$
\operatorname{Res}(f ; \infty)=-a_{-1}
$$

Notice that even when $z=\infty$ is a removable singularity of $f(z)$, it is possible that $\operatorname{Res}(f ; \infty) \neq 0$.
(a) Show that $\operatorname{Res}(f ; \infty)$ equals the residue of $-z^{-2} f(1 / z)$ at $z=0$.
(b) Show that

$$
\operatorname{Res}(f ; \infty)=-\frac{1}{2 \pi i} \int_{|z|=r} f(z) d z \quad(R<r<\infty)
$$

where the circle $|z|=r$ is oriented counterclockwise.
(c) Let f be holomorphic in \mathbb{C} except for a finite number of isolated singularities $z_{1}, \ldots, z_{n} \in \mathbb{C}$. Show that

$$
\operatorname{Res}\left(f ; z_{1}\right)+\ldots+\operatorname{Res}\left(f ; z_{n}\right)+\operatorname{Res}(f ; \infty)=0 .
$$

