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Figure 1: When the level set is advected by the BFECC [Dupont and Liu 2003] method, the simulation of a rising bubble produces volume
loss (top). When the proposed volume control method is used, the volume of bubble is preserved regardless of the length of the simulation
(bottom). From left to right, each column shows the bubble at t = 0, 0.0625, 0.125, 0.25, 0.5, and 10.0 second. The image on the far right
shows a foam structure obtained after raising more than 400 bubbles.

Abstract

Liquid and gas interactions often produce bubbles that stay for a
long time without bursting on the surface, making a dry foam struc-
ture. Such long lasting bubbles simulated by the level set method
can suffer from a small but steady volume error that accumulates
to a visible amount of volume change. We propose to address this
problem by using the volume control method. We track the vol-
ume change of each connected region, and apply a carefully com-
puted divergence that compensates undesired volume changes. To
compute the divergence, we construct a mathematical model of the
volume change, choose control strategies that regulate the modeled
volume error, and establish methods to compute the control gains
that provide robust and fast reduction of the volume error, and (if
desired) the control of how the volume changes over time.

1 Introduction

In real fluids, we often observe a bubble rising to the surface, and
then floating on the surface. Multiple bubbles interact. If they do
not burst, they will stack, forming wet foam. The water between
those stacked bubbles will drain, leaving a micrometer-thin film of
liquid between bubbles. The resulting structure is called dry foam.
Simulation of bubbles in wet or dry foam is very challenging since
foam can have a complicated liquid/gas interface. Each bubble is
surrounded by several faces of thin films, which may meet at junc-
tions, where liquid is clustered. These junctions may move, merge
and split. In addition, bubbles or liquid drops can merge and split.
Thus, the topology of the interface changes often. These behav-
ior causes difficulties for simulations based on the Lagrangian and

Eulerian methods. In Lagrangian methods, a thin film may be rep-
resented well but topological change is hard to handle. In Eulerian
mesh, when the level set representation is used, topological changes
are trivially handled, but it is hard to capture thin films. This diffi-
culty was addressed recently by the regional level set method pro-
posed in [Zheng et al. 2006], in which each bubble is implicitly
associated with a region identifier and a level set function that sam-
ples distance to the bubble boundary. The regional level set method
allows us to represent a thin film as the boundary between two gas
regions.

Bubbles in foam or small bubbles in liquid have smooth surfaces
stretched by surface tension. Since the thin film is represented by
the regional level set method, the bubbles and foam can be simu-
lated in low resolution grids such as a 643 grid. Unfortunately, a
fluid simulation on such a low-resolution grid tends to yield slow
but steady volume loss [Zheng et al. 2006].

Various chemical or physical reactions may result in volume
changes of bubbles. For example, bubbles are inflated in boiling
water. In addition, an animator may want to inflate fluid region as
a function of time. Animations of these behaviors would require a
method to change the volume of bubbles using a prescribed function
of time. Therefore, our goal is not only to remove the volume error,
i.e., to ensure that the volume of liquid and bubbles is preserved
regardless of the simulation time (See Figs. 3 and 4), but also to
simulate bubbles that change volume. We achieve these goals by
using a new volume control method that applies divergence of the
velocity field to fluid regions in order to compensate their volume
error. For each of these regions, the divergence is computed care-
fully by using a model of the volume error in terms of the volume
and by constructing nonlinear feedback controllers similar to the
proportional and integral feedbacks so that the volume error con-
verge to a small number or zero. We also propose to compute the
controller gains using simulation parameters while ensuring fast,
stable, and robust volume error correction. We validate the volume
change equation and controller by several experiments.

2 Prior Arts

Significant progress has been made since the pioneering work on
fluid simulation for computer graphics [Kass and Miller 1990;
O’Brien and Hodgins 1995; Foster and Metaxas 1996]. The sta-



bility problem of earlier work was addressed in [Stam 1999], in
which semi-Lagrangian advection and pressure projection were in-
troduced. This solution became popular for the simulation of in-
compressible fluids, such as smoke [Fedkiw et al. 2001], and also
for free surface flows [Foster and Fedkiw 2001; Enright et al. 2002].
A well-known drawback of the semi-Lagrangian approach [Stam
1999] is the excessive diffusion and dissipation. Several solutions
were proposed such as the vorticity confinement method [Fedkiw
et al. 2001], vortex particles [Selle et al. 2005], vortex fluid [Park
and Kim 2005], and higher-order advection methods [Song et al.
2005; Kim et al. 2005; Selle et al. 2007].

In contrast to the simulation of gaseous phenomena, the simulation
of liquids requires the representation of the complicated liquid sur-
face. A representation that has been widely used is the level set
method [Osher and Sethian 1988; Osher and Fedkiw 2002; Sethian
1999]. In [Foster and Fedkiw 2001], the level set method was used
in fluid simulation to create a realistic liquid simulation. Several re-
searchers used this level set method in [Enright et al. 2002; Losasso
et al. 2004; Carlson et al. 2004; Goktekin et al. 2004; Selle et al.
2005; Enright et al. 2005] to simulated liquids without bubbles,
considering air as a vacuum. In contrast, liquid and air interactions,
such as bubbles, requires the variable density pressure projection
method that has been broadly studied in mathematics and fluid me-
chanics [Sussman et al. 1994; Kang et al. 2000; Haario et al. 2004].
This variable density pressure projection has been used in graphics
applications by [Song et al. 2005; Kim et al. 2005], in which splash
and bubbles are simulated. The bubble simulation using Lattice-
Boltzmann-Method (LBM) is studied in [Nils Thurey 2004; Pohl
et al. 2004]. The particle-based methods are found in [Greenwood
and House 2004; Muller et al. 2005].

Although the two-phase flow method can simulate bubbles, the
practical simulation of foam, in particular, dry foam, is more chal-
lenging since the micrometer-thin liquid film is not captured by an
Eulerian grid. Consequently most foam simulations have been per-
formed by using Lagrangian methods. For example, the authors of
[Kück et al. 2002] approximated foam bubbles as spheres and then
studied interactions between them, but the interaction between bub-
bles and liquid has not been investigated. In contrast, the authors
of [Takahashi et al. 2003] used particle to represent foams and sim-
ulated interactions with liquids. However, thin liquid film was not
simulated. Mihalef et al [Mihalef et al. 2006] simulated boiling wa-
ter. All bubbles were burst at the surface and they did not attempt
to simulate stacking bubbles.

Thin liquid films become stable with surfactants. Such liquid films
are governed by molecular interactions rather than by the Navier-
Stokes equations. Molecular interactions such as electrostatic, van
der Waals, steric, and adsorptional interactions, are the subjects of
numerous engineering and scientific studies [Prud’home and Khan
1996; Exerowa and Kruglyakov 1998; Weaire and Hutzler 1999;
Stubenrauch and von Klitzing 2003]. Beside these efforts to under-
stand thin film, its simulation is rare. The authors of [Weaire and
Hutzler 1999] constructed piecewise curves and patches to simulate
a dry foam. The author of [Durian 1997] simulated 2D dry foam us-
ing circular bubbles. Because circular bubbles avoid the difficulties
related to the thin films, it greatly simplifies the simulation of foam.
A drawback of these approximating methods would be the lack of
bursting, split, and interactions with liquid. These limitations result
in a loss of realism. The authors of [Bazhlekov et al. 2001] sim-
ulated the behavior of a foam drop that is made of a few bubbles.
They used a Lagrangian mesh to represent the liquid/gas interface.
Simulations of various phenomena such as wet foam, formation of
dry foam, bubble merging, and bursting were not attempted.

In computer graphics, complex bubble interactions such as merg-
ing, splitting, and bursting were simulated in Eulerian grids by us-

ing the regional level set method [Zheng et al. 2006]. Since the thin
films of bubbles are represented as the boundary between two gas
regions, the simulation of thin film can be performed efficiently us-
ing a low resolution grid. A remaining challenge is the volume loss
of bubbles.

The volume loss property of the level set method has been ad-
dressed by various methods. Among them, the easiest way to re-
duce the volume loss is simply using high order advection methods
such as BFECC (Back and Forth Error Compensation and Correc-
tion) [Dupont and Liu 2003; Kim et al. 2005], modified MacCor-
mack [Selle et al. 2007], or CIP [Song et al. 2005; Takahashi et al.
2003] methods. These methods reduce the volume loss of the first-
order level set methods significantly, but the volume loss may still
be substantial. In contrast, the particle level set method (PLS) [En-
right et al. 2002] reduces volume loss down to a very small amount.
Therefore, the PLS has been broadly used in recent fluid simula-
tions [Carlson et al. 2004; Goktekin et al. 2004; Selle et al. 2005;
Enright et al. 2005; Hong and Kim 2005; Wang et al. 2005]. In ad-
dition, one can have other benefits such as increased surface detail
and visual effects obtained by rendering escaped particles [Guen-
delman et al. 2005]. Nevertheless, the small volume loss may even-
tually accumulate to a visible level [Goktekin et al. 2004; Losasso
et al. 2006b], especially in a long simulation. In particular, the bub-
bles and thin film simulated on a coarse resolution grid suffer from
noticeable volume loss [Zheng et al. 2006]. Another approach is
to combine the level set with the volume of fluid (VOF) method.
This combined approach, called Coupled Level Set and Volume Of
Fluid (CLSVOF) [Sussman 2003], does not have volume loss as
the volume fractions are tracked in each cell. Using this CLSVOF
method, the simulation of boiling water was performed in [Mihalef
et al. 2006]. As stated in [Sussman 2003], those various Eulerian
methods (CLSVOF, PLS, BFECC, MacCormack, CIP) are conver-
gent to the correct solution as the grid is refined. Our volume con-
trol method can be used with those methods to correct the relatively
large volume error of BFECC, MacCormack, and CIP, to remove
the small but accumulating volume error of PLS, or to allow arbi-
trary volume change while using CLSVOF, PLS, BFECC, and CIP.
We note that our volume control does not undermine the overall ac-
curacy of the Navier-Stokes equation. Among those methods, the
BFECC method is trivial to implement over first-order advection
schemes, and our volume control method can correct the volume
loss of BFECC. Therefore, we test our volume control method with
BFECC.

Our approach to volume control applies divergence to inflate or
deflate gas bubbles or liquid drops so that the desired volume is
maintained. Similar ideas have been explored in fluid animation.
The scheme called divergence sourcing was used in [Losasso et al.
2006a; Feldman et al. 2003]. In [Feldman et al. 2003], particle ex-
plosion is achieved by treating particles as divergence sources. In
[Losasso et al. 2006a], divergence is applied to model the expansion
from solid fuel to gas fuel. Our contribution is to adapt this idea to
volume conservation, model the volume change equation, construct
the controllers, and provide gain-synthesis methods from simula-
tion parameters so that one can easily compute gains that provide
fast and stable volume correction.

3 Fluid Simulation

We use the following Navier-Stokes equation

∂u
∂ t

=−u ·∇u+ν∇ · (∇u)− 1
ρ

∇P+
f
ρ

,

where u is the velocity of fluid, t is time, ρ is the fluid density, P
is the pressure variable, and f is external forces such as surface ten-
sion. We use the operator-splitting steps proposed in [Stam 1999].



The surface tension is implemented by using the ghost fluid method
presented in [Hong and Kim 2005]. General topics on fluid simula-
tion are summarized in [Bridson et al. 2006].

3.1 Nonstaggered Octree Grid

Even though the level set method allows simulation of a liquid’s sur-
face, the complexity of the surface that can be simulated is limited
by the grid resolution. A significant improvement can be obtained
by an adaptive grid such as an octree [Losasso et al. 2004; Shi and
Yu 2004]. In particular, [Losasso et al. 2004] showed that detailed
liquid surfaces can be simulated by using an octree grid.

We simplify the octree-grid representation used in [Losasso et al.
2004], by storing pressure and velocity at the center of octree cell.
Since all values are stored at centers of the octree cells, we do
not need a parallel data structure for cell corners, where veloci-
ties and level set values were stored in [Losasso et al. 2004]. In
addition, velocity transfer [Guendelman et al. 2005] to the cell face
is not needed either. Therefore, the implementation becomes sim-
pler and more memory-efficient. In our experiments, the 5123 grid
with a flat water surface and 63 bubbles underneath requires 14 mil-
lion octree leaves. In this case, 2.5GB of memory was used. The
10243 grid with five bubbles under a water surface requires 2.2GB
of memory. About 65% of the memory was used for the octree.
The remaining 35% was used for the symmetric pressure projec-
tion matrix and for temporary vectors needed for conjugate gradient
iterations.

As proposed in [Losasso et al. 2004], we perturb the sampling
points to obtain a symmetric pressure projection matrix. The two
phase flow formulation is similar to [Song et al. 2005], except for
the differentiation operator across different grid resolutions. Note
that all our variables are defined at cell centers. Therefore, the dif-
ferentiations of these variables are the same as the differentiation of
pressure in [Losasso et al. 2004].

3.2 Level Set

We use the level set method to trace the interface between liquid
and gas. We use the BFECC (Back and Forth Error Compensation
and Correction) for the level set advection and the fast sweeping
method [Tsai et al. 2001] for the redistancing.

The BFECC method applied to level set advection tends to induce
high-frequency noise on the interface wherever the velocity field
is not smooth. Therefore, as suggested in [Dupont and Liu 2007],
we add a small amount of diffusion using the following disturbed
Courant-Isaacson-Rees (CIR) [Courant et al. 1952] advection

φ
n+1 =

1
2

[ φ
n(−u∆t + εe)+φ

n(−u∆t− εe) ] ,

where we randomly choose e from the four directions
{(1,1,1),(1,−1,1),(−1,1,1),(−1,−1,1)} in each time step,
and use ε = 0.2∆x.

We use the regional level set method [Zheng et al. 2006] to repre-
sent multiple fluid regions. When two liquid regions are touching,
we merge them into one liquid region. Therefore, a liquid drop
merges with other liquid bodies. In contrast, when two gas re-
gions are contacting, we do not merge them so that we can keep
the bubble seperate. The interface between two contacting gas re-
gions (bubbles) is treated as a thin liquid film.

When the liquid film is stretched or liquid in a film has evaporated
or drained, the liquid film becomes thin. When the film becomes
too thin, the thin film ruptures. In regional level set method, one
can keep track of each thin film, and when one of these conditions

occurs, one can make the film rupture by merging the two gas re-
gions on the two sides of the film. In this way, the bursting and
merging of bubbles can be simulated. In our experimental valida-
tion, we choose to prevent bubble merging or bursting effects, and
focus instead on demonstrating the benefits of our volume control
approach for long simulations where bubbles remain separated.

3.3 Interpolation of the Regional Level Set

For the advection of the level set, we use the BFECC method
that calls the Courant-Isaacson-Rees (CIR) method three times and
combine the results so that the spacial and temporal orders of ac-
curacy are both increased by one. Therefore, the smallest build-
ing block of the regional level set advection is the CIR step, which
backtracks along the velocity vector and then interpolates the level
set value and selects the region number. We implement this inter-
polation in the following way. First, consider a one-dimensional
interpolation problem. In Fig. 2, suppose that we are computing
the level set value φ1 and the region number r1 at the blue point by
interpolating two green point values (φi, j,ri, j) and (φi+1, j,ri+1, j).
The interpolated values φ1 and r1 are computed as

φ1 =
{

(1−m)φi, j +mφi+1, j , if ri, j = ri+1, j
|(1−m)φi, j−mφi+1, j| , if ri, j 6= ri+1, j

r1 =
{

ri, j , if (1−m)φi, j ≥ mφi+1, j
ri+1, j , if (1−m)φi, j < mφi+1, j

Notice that since the region number plays the role of the sign bit of
the traditional level set, the level set value φ is nonnegative every-
where.

For bilinear interpolation, we first interpolate yellow points to φ2
and r2 and then interpolate along vertical dotted line to values at
the red point as illustrated in Fig. 2. The trilinear interpolations can
be easily obtained by extending this 2D example to 3D.
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Figure 2: Interpolation of level set value φ and the region number
r. Notice that φ ≥ 0

3.4 The Liquid Film and Surface Tension

When two gas regions are touching, there exists a thin liquid film
between them. Therefore, we assign the density of the liquid on the
grid location next to the interface. This liquid density is used in the
variable density pressure projection.

In addition, we apply the surface tension to this thin film by us-
ing the ghost fluid method. Since the ghost fluid method requires
curvature that is computed by taking the divergence of the normal-
ized level set gradient vectors, i.e., ∇ · ∇φ

|∇φ | , differentiations over
the same or different regions are needed. We perform this differ-
entiation in the following way. Suppose that ϕ is the property that



is about to be differentiated. Then, its derivative ϕx = ∂ϕ

∂x at the
i th grid point is computed as

ϕx =
ϕ+

x +ϕ−x
2

,
ϕ+

x =
{

(ϕi+1−ϕi)/h , if ri = ri+1
(−ϕi+1−ϕi)/h , if ri 6= ri+1

ϕ−
x =

{
(ϕi−ϕi−1)/h , if ri = ri−1
(ϕi +ϕi−1)/h , if ri 6= ri−1

, (1)

where h is the grid size. Notice that if ri = ri+1 = ri−1, then the
above is the same as the centered difference. The derivatives along
y and z axes can be computed similarly. The gradient of the level
set variable φ computed from (1) will produce vectors pointing to
the interior of each region. Therefore, at the interface, we have
normalized gradient vectors ∇φ

|∇φ | with opposite directions. How-

ever, when we take the divergence of ∇φ

|∇φ | , we again use (1) that
reverse the direction at the neighboring cell that has a different re-
gion number. In other words, ∇φ

|∇φ | is locally reversed to produce a
smooth vector field, and then the divergence of that vector field is
computed as the curvature κ = ∇ · ∇φ

|∇φ | . The resulting vector κ
∇φ

|∇φ |
computed at a grid point (i, j,k) is the curvature vector of the isosur-
face {(x,y,z)|φ(x,y,z) = φi, j,k}, which is smooth across the region
boundary.

4 Controlling Fluid Volume

The volume control is used to compensate the volume loss or gain
by inflating or deflating regions. The first step is to compute the
volume error. Based on this volume error, the second step is to
compute the desired divergence of velocity field. The final step is
to apply this divergence to the velocity field in a modified pressure
projection step. The regions will inflate (positive divergence) or
deflate (negative divergence) to compensate the volume error.

The key challenge is to find an explicit formula, called controller,
that computes the divergence from the volume error. The controller
must be derived carefully so that the volume error is quickly cor-
rected without losing stability. The derivation of such controller
is complicated since it requires the construction and analysis of a
mathematical volume change model. However, the implementation
of such a controller is simple since the controller is an explicit equa-
tion. Thanks to this simplicity, the volume control is in fact a simple
method. Therefore, we present the volume control algorithm with-
out derivations in this section. Detailed derivations are provided in
the appendix.

4.1 The Volume Control Method

The first step is to compute the volume of each fluid region; see
section 4.2 for detail. Let V n

i be the volume of the i th region at
the n th time step, and let Ṽ n

i be the corresponding desired volume.
When we want to preserve the initial volume throughout the simu-
lation, Ṽ n

i = V 0
i for all n. In contrast, when we want to change the

volume of the i th region, we can set Ṽ n
i to be the desired value.

After computing volumes, we compute the volume error, for which
we propose to use

xn
i =

V n
i −Ṽ n

i
Ṽ n

i
.

This volume error xn
i is the normalized difference between the cur-

rent and desired volume of the i th region at the n th time step. Using
this volume error xn

i as a feedback input, we compute the divergence
ci to compensate the volume loss or gain. The required divergence
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Figure 3: Comparison of controllers with a single bubble in a 643

grid. The proportional controller produces somewhat large error
and the PI controller improves it. The high frequency fluctuation
come from the error in the volume computation. Notice that the
controller is robust against this error.
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Figure 4: Comparison of controllers with a single bubble in a 1283

grid. The proportional controller produces a small error, and the
PI controller corrects it.

ci is computed by a nonlinear controller

cn
i = −kP

xn
i

xn
i +1

, (2)

where the constant kP is called controller gain. Note that only if
this gain kP is properly chosen, the controller (2) is able to correct
the volume error stably and quickly. The computation of kP will be
discussed later in this section.

If we assume small xn
i , we have xn

i +1≈ 1. Therefore, cn
i ≈ −kP xn

i ,
which is a proportional controller. For this reason, we call (2) a
proportional controller and call kP proportional gain. This pro-
portional controller has a small drift error as shown in Figs. 3
and 4. This drift error can be removed by integrating the vol-
ume error over time, and then using it as another feedback input:
cn

i = 1
xn

i +1
(
−kP xn

i − kI ∑
n
m=0 xm

i ∆t
)

, which is equivalent to

yn
i = yn−1

i + xn
i ∆t

cn
i =

1
xn

i +1
(−kP xn

i − kI y
n
i ) .

(3)

Since (3) is approximately a proportional-integral (PI) controller,
similarly to the proportional controller case, we call (3) a PI con-
troller and call kI PI gain. From Fig. 3 and 4, we can observe that
the drift error is eliminated by the PI controller.

We compute the divergence cn
i for all regions at each time step for

i = 1,2, ..., and then apply the computed divergence value cn
i uni-

formly to each region to obtain a piecewise constant divergence
function cn at the n th time step.

Once the divergence function cn is obtained, we modify the pressure
projection step so that the projected velocity field has the divergence
cn. The regions that lost volume will have positive divergence val-
ues, and hence they will be inflated. In contrast, the regions that
gained volume will have negative divergence values, and therefore,



they will be deflated. Let u∗ be the velocity computed before the
pressure projection is applied, and let cn be the desired divergence
in a region. The modified pressure projection projects u∗ to a ve-
locity un+1 that has divergence cn, i.e.,

∇ ·un+1 = cn ⇒ ∇ · ∇P
ρ

=
1
∆t

(∇ ·u∗− cn), (4)

The first order discretization of this variable-coefficient Poisson
equation is provided in [Song et al. 2005]. Since cn is simply sub-
tracted from the divergence, the complexity of the pressure projec-
tion step is not increased.

If gain coefficients kP or kI are not properly chosen, the volume er-
ror will fluctuate at large magnitude, or the simulation may become
unstable. Therefore, the remaining question is how to compute kP

and kI . To answer this question, we perform further analysis on the
volume change of a region under a constant divergence inside the
region to construct the volume change equation. Using this equa-
tion, we show that if kP is computed as

kP =
− ln0.1

nP ∆t
=

2.3
nP ∆t

=
2.3
tP

, (5)

90% of the volume error is corrected in nP time steps or in time
tP = nP ∆t. We typically chose nP = 25. In addition, we show that if
the integral gain kI is computed as

kI =
(

kP

2ζ

)2
(6)

the closed loop volume equation is critically damped when ζ = 1
or over damped when ζ > 1. We typically chose ζ = 2 in order
to suppress the noise coming from the volume computation. See
appendix for derivation details.

4.2 Computation of the Volume of a Region

In order to perform volume control, the volumes of fluid regions
must be computed. This volume computation can be performed us-
ing various methods. First, suppose that one extracts the isosurface
of a region using the marching cubes method [Lorensen and Cline
1987], and then computes the volume bounded by the isosurface.
Since the marching cubes method produces piecewise linear sur-
face, the Eucledian distance from the extracted surface to the exact
isosurface (or the limit surface) is O(∆x2) for smooth surfaces. Let
S be the surface area of the region. The volume error is bounded
by O(∆x2)S = O(∆x2). Therefore, the volume computation using
marching cubes is in principle second-order accurate for smooth
surfaces. Moreover, if a high-order isosurface extraction such as
[Schreiner et al. 2006] is used, the volume may be computed with
higher accuracy.

However, the isosurface extraction is expensive to perform at each
time step. Therefore, we use a method proposed in [Kumar and Lee
2006]. Suppose that we are computing the volume of a region r.
We consider the following smoothed Heaviside function H(φ)

H(φ) =


1 , if ε < Φ

1
2 + 3Φ

4ε
− Φ3

4ε3 , if |Φ|< ε

0 , if Φ <−ε

,

where Φ is the signed distance function computed from the re-
gional level set function by assigning negative signs to the level
set values at cells that does not belong to the region r. Using this
smoothed Heaviside function, the volume of region r is computed
as V =

∫
V H(Φ)dV , which can be integrated by using the 8-point

Gaussian quadrature rule. Given that ε is O(∆x) and is smaller than
the local feature size, this method is expected to be second-order
accurate for volume computation, although a rigorous proof is not
available. To verify it numerically, we conducted numerical tests
to obtain the volume computation error for a sphere on grids of
varying resolutions: 203,403,803, and 1603, and then estimate the
order of accuracy by log(E1/E2)/ log(∆x1/∆x2), where E1,2 and
∆x1,2 are volume errors and cell sizes of different grids. The con-
vergence rates were 1.98, 1.90, and 2.05, and hence this method is
suitable to our need.

4.3 Computation Time

The pressure projection is used to solve a matrix equation in the
form Qx = y, and the volume control adds divergence to the right-
hand side y. Although the matrix remains the same, added diver-
gence may cost more iterations in the pressure projection. Our ex-
periments indicate that the slow down in pressure projection is neg-
ligible. The most expensive step in the volume control method was
the volume computation. The time for volume computation and
modified pressure projection increased the total computation time
only by about 8∼ 10%.

4.4 Discussions on the Order of Accuracy

An interesting question left is whether the volume control affects
the overall order of accuracy or not. To answer this question, first
observe that since we use the centered difference, the discretized
∇ ·u∗ in (4) has an error of O(∆x2). Therefore, if the divergence cn

is O(∆x2), the order of accuracy of the ∇ ·u∗− cn is not changed.

Notice that the overall simulation is first-order accurate due to the
use of the operator splitting, and in addition, the velocity diffusion
and the pressure projection steps are also first-order accurate in both
space and time. This implies that u∗ already contains an error of
magnitude O(∆x2,∆t2). Therefore, we assume that the volume has
the error V = Ṽ +O(∆x2,∆t2). Since x = (V−Ṽ )/Ṽ = O(∆x2,∆t2),
the divergence is also c = −kP x/(x + 1) = O(∆x2,∆t2) for a con-
stant kP . Note that this result is valid assuming that the volume
computation error is O(∆x2). As discussed in section 4.2, there
exist such volume computation methods. Therefore, the overall ac-
curacy of the simulation remains first order.

5 Results

Using the volume control method, we can simulate fluids without
volume loss. As shown in Figs. 3, 4, and 5, the volume loss is
corrected by using volume control method, and we obtain bubbles
that can last for an arbitrarily long period. In Fig. 5, we raise about
400 bubbles to form a foam, where the surface tension coefficient
used is γ = 0.07 N/m. The size of the computational domain is
10cm3, discretized by a 643 grid. The computation takes about 12
seconds per time step at the end when large number of bubbles are
stacked. The whole simulation takes about 30 hours on a PC with a
3.4GHz Pentium 4 processor.

As discussed earlier, the volume control method is not only used
to correct the volume error, but it can also be used to change the
volume of fluid. In Fig. 6, we demonstrate this by inflating bub-
bles. We let the desired volume increase linearly over time until
all the bubbles become 20 times larger than their initial volumes.
As shown in Fig. 6, the volume control produces divergence that
inflate bubbles to follow the desired volume. We use a 1283 equiv-
alent grid, and the surface tension coefficient γ = 0.07 N/m. The
size of the computational domain is 10cm3. The computation time



Figure 5: Simulation of foamy bubbles. A large spherical bubble was raised. After a while, it formed a bubble ring (4th image). 400 bubbles
were created in small batches at the bottom of the tank replacing water with air producing foam. The volume of each bubble is carefully
maintained throughout the simulation. Since bubbles were created by replacing liquid, the liquid level was lowered. Nevertheless, by applying
the volume control, the total volume of liquid and bubbles is preserved regardless of the length of the simulation.

was about 30 seconds per time step on a Pentium 4 at 2.0 GHz when
the bubbles are inflated to large bubbles.

In Fig. 7, we drop liquid droplets on foam obtained during the
inflation test. When the droplet is dropped near a vertical film, it
moves down along the vertical film. When the droplet is dropped
on a nearly horizontal portion of the film, it traverses it, which is
the correct behavior, since drops of water pass through soap films
without breaking them. The video is available from http://www-
static.cc.gatech.edu/∼bmkim/volume control.avi.

6 Conclusion

We proposed a method to preserve or control the volume of fluid
using the divergence as a control variable. We adopted two nonlin-
ear control strategies, developed a method to compute control gains,
and showed its effectiveness on several examples. A liquid or gas
region can preserve its volume for an indefinitely long time without
adversely affecting the simulation accuracy. The proposed method
can be used with any previously proposed interface representation
and advection methods to correct volume errors or allow arbitrary
volume change.
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8 Appendix

8.1 The Volume Change Equation

When the level set is advected by BFECC, a fluid region, such as
a gas bubble, gains or loses little volume per time step. It typi-
cally takes almost 500 time steps before a bubble loses half of its
volume in a 1283 grid. In other words, the volume change is not



0 0.05 0.1 0.15 0.2 0.25 0.3
−1

−0.8

−0.6

−0.4

−0.2

0

time

er
ro

r s
ta

te
: x

0

0.5

1

1.5

2

vo
lu

m
e 

(c
m

3 )

Initial Volume
γ=0.07
γ=0.14

Figure 8: The volume loss rate b of a rising bubble strongly de-
pends on the surface tension (ci = 0).

a high frequency behavior. This slow dynamic nature implies that
a derivative feedback is not necessary and a proportional feedback
would suffice. To design an appropriate controller, we must first
construct a mathematical model of the volume change. Using this
model, we will develop controllers and compute control gains so
that the modeled volume change is corrected.

Recall that the volume error is defined as xn
i = V n

i −Ṽ n
i

Ṽ n
i

. Since mod-
eling how the xn

i changes at each discrete time step is difficult as
the volume changes as a result of complex simulation procedure,
we use a continuous time model, i.e., we use Vi = Vi(t),xi = xi(t)
and ci = ci(t) instead of V n

i ,xn
i and cn

i . The rate of volume change
is computed using the divergence theorem as

V̇i =
∫

Si

u ·ndS =
∫

Vi

∇ ·udV = ciVi,

where Si is the boundary of the fluid volume Vi, and n is the unit
outer normal vector to the boundary. Therefore, ideally, the volume
should not change when ci = 0, but simulation experiments show a
volume loss due to the numerical errors in the level set advection
and the pressure projection steps. After extensive experiments, we
conclude that this volume loss can be modeled by the following
equation using an unknown factor b̃

V̇i = ciVi + b̃. (7)

When ci = 0, simulation experiments in Figs. 8 and 9 show that
the volume graph has large nearby linear segments connected by
curved transitions. In each linear segment, the slope is constant,
indicating piecewise constant b̃. Rewriting (7) in terms of xi, we
obtain

ẋi =
V̇i

Ṽi
=

ciVi + b̃
Ṽi

= ci(xi +1)+b, (8)

where b = b̃/Ṽ .

The unknown factor b primarily depends on the level set advection
method, but it also depends on simulation parameters such as the
time step ∆t, the cell size ∆x, the sizes of bubbles or liquid drops,
the surface tension, and others. Figures 8 and 9 show effects of
surface tension and the grid size. In addition, b changes during the
simulation. For example, b is large when a liquid film is formed.
Finally, from Figs. 8 and 9, we can observe that b changes slowly.

8.2 A Proportional Feedback Controller

The volume loss observed in the previous section can be compen-
sated by adding a divergence ci. We set ∇ ·u = ci inside each region.
Different regions have different values of ci. We first consider the
feedback

ci =−kP xi / (xi +1) . (9)

This is a nonlinear feedback, but since |xi| � 1, ci ≈ −kP xi. Due
to the similarity with the proportional feedback −kP xi, (9) will be

0 0.05 0.1 0.15 0.2 0.25 0.3
−1

−0.8

−0.6

−0.4

−0.2

0

time

er
ro

r s
ta

te
: x

0

0.5

1

1.5

2

vo
lu

m
e 

(c
m

3 )

Initial Volume
2563

5123

Figure 9: The volume loss rate b of a rising bubble depends on the
mesh resolution (ci = 0).

called the pseudo proportional feedback or proportional feedback
for simplicity.

Plugging (9) into (8), we obtain a linear equation

ẋi + kP xi = b, (10)

which has the following explicit solution

xi(t) = xi(ti)e−kP (t−ti) +
b
kP

(
1− e−kP (t−ti)

)
,

where ti is the time when the i th region is created. If kP > 0, this
explicit solution shows that the error xi(t) does not converge to zero,
but

xi(t)→ b / kP as t → ∞. (11)

This steady-state error b/kP is the drift error we observed with the
proportional feedback in the rising bubble experiment in Figs. 3
and 4. This is due to the fact that a rising bubble loses volume
until the loss Vi− Ṽi is large enough for the proportional controller
to produce large enough divergence ci. As a result, the volume
of a rising bubble tends to saturate to a slightly smaller volume.
However, the amount of shrinkage is unknown since it is a function
of many different simulation methods and parameters.

8.2.1 Computing Proportional Gain kP

The equation (11) shows that the volume error can be reduced down
to b/kP , which may be very small if kP is sufficiently large. With
this observation, a natural approach to compute kP is first to define
an error tolerance εv, and then computing the gain as kP = |b|/εv
so that the steady state error is smaller than the tolerance. Since
b is unknown, one may estimate b from a number of experiments.
However, as shown in the previous section, b is a function of many
factors and it is hard to estimate. More importantly, if the error
tolerance εv is arbitrarily small, the gain kP = |b|/εv will be arbi-
trarily large. This will produce an arbitrarily large divergence in-
put ci = −kP xi, which can halt the simulation if the time step is
not sufficiently small. Therefore, we do not compute kP from the
steady-state error tolerance.

Instead, we use the rising time criterion to design the gain kP . We
first assume that a fluid region has a volume error x. The user speci-
fies the number of time steps nP , during which the volume error x is
reduced down to x/10. The time nP ∆t is called the rising time. The
use of rising time criterion provides an important advantage. Since
we specify the number of time steps nP , the resulting divergence
input will try to fix the volume error in nP time steps. For example,
if we set nP = 25, the volume error will be reduced down to 10% in
25∆t seconds.

Notice that instabilities may occur if nP is too small. For example,
if nP < 1, the divergence input will be large and the volume of the
region may grow or shrink more than necessary in a single time
step, making the simulation unstable.
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Figure 10: Step responses of the volume of a bubble show that 90%
of the volume error is indeed corrected in about nP steps.

Now, we derive kP . As will be shown in the following experiments,
the steady state volume error is small. Thus, b in (10) can be ig-
nored for the controller construction. Ignoring b, the volume error
evolves in the following discrete form

xn
i =

(
e−kP ∆t

)n
x0

i ,

where xn
i is the relative volume error of the i th region in the n th time

step. Since nP is the number of time steps required to reduce the
initial error x0

i down to 10%, the proportional gain kP is computed

from the condition
(

e−kP ∆t
)nP = 0.1 as (5).

To validate the volume change equation and the proposed con-
troller, we set the volume error xi =−0.1 and then apply the volume
control. As shown in Fig. 10, the error xi decreases towards zero in
approximately nP time steps in various grid resolutions.

8.3 A Proportional-Integral Feedback Controller

As shown in Fig. 3, the proportional control produces a small vol-
ume error that does not accumulate. In fact, the proportional control
seems sufficient in most cases. For example, Fig. 4 shows that the
volume error in 1283 grid is less than 3%, when the proportional
feedback with nP = 25 is applied. However, in some cases, when
a low resolution grid is used with large surface tension, the volume
error tends to increase when the proportional controller is used, as
shown in Fig. 3, where the volume error is about 10%. Although
10% may not be easily noticeable, we develop below an additional
control strategy that further reduces this volume error.

In the classical control strategy [Shinners 1978], a natural choice for
removing drift error is to use integral feedback, by which the small
drift error will be integrated over time and then used as an additional
control input. This is an efficient strategy since the small drift error
can be accumulated to produce large control input. Consider the
following nonlinear feedback with an integral term

ci =
1

xi +1

(
−kP xi− kI

∫ t

−∞

xidt
)

=
1

xi +1

(
−kP xi− kI

∫ t

ti
xidt− kI

∫ ti

−∞

xidt
)

,

(12)

where ti is the time when the i th region, for example a bubble, is
created. This is a nonlinear feedback, but since |xi| � 1, the feed-
back is similar to the proportional-integral feedback

ci =−kP xi− kI

∫ t

−∞

xidt.

Therefore, we call (12) as the proportional-integral (PI) feedback.
The term

∫ ti
−∞

xidt is computed by combining the error integrals of

previous components that contributed to the i th component. Using
this feedback, we obtain a linear equation

ẋi + kP xi + kI

∫ t

−∞

xidt = b. (13)

If we choose positive gains, i.e., kP > 0 and kI > 0, the volume
error tends to vanish, i.e., xi(t) → 0 as t → ∞. In addition, by
taking the time-derivative of the solution of (13), we can show that
ẋi(t)→ 0 as t → ∞. Therefore, from (13), we obtain

kI

∫ t

−∞

xidt = b− ẋi− kP xi → b as t → ∞,

which shows that kI

∫ t
−∞

xidt is an estimate of the unknown factor
b, and that the PI-controller uses this estimate to cancel the b factor.

The next question is the computation of
∫ ti
−∞

xidt. When several re-
gions merge or split to create new set of regions, the terms

∫ ti
−∞

xidt
in (12) of the new regions can be computed in the following way.
Suppose that j1 th , j2 th , ..., jn th regions at the n th time step are
merged to form a bigger region that is identified as the i th region at
the (n + 1) th time step. To further generalize this, suppose that the
volume fractions of w1,w2, ...,wn of each region went to the new
i th region. The desired volume of i th region is Ṽi = ∑

n
k=1 w jkṼ jk ,

and the current volume is Vi = ∑
n
k=1 w jkV jk . The error integral of

the new region
∫ ti
−∞

xidt is computed from the error integrals of the

old regions
∫ t jk
−∞ x jk dt,k = 1,2...,n as

∫ ti

−∞

xidt =
∫ ti

−∞

Vi−Ṽi

Ṽi
dt

=
1
Ṽi

∫ ti

−∞

(
n

∑
k=1

w jkV jk −Ṽi

)
dt

=
1
Ṽi

n

∑
k=1

(
w jkṼ jk

∫ ti

−∞

x jk dt
)

.

8.3.1 Computing Integral Gain kI

The drift error of proportional control can be removed by adding
integral feedback. However, improperly chosen integral gain kI can
cause undesired oscillations in the volume, which indeed occurred
in our experiments on stacked bubbles. Therefore, we propose a
method to compute the gain kI in a way that we can specify damping
amount so that the unnecessary oscillation is not induced by the PI
controller.

Let y =
∫ t

0 xidt. Then, from (13), we obtain a second order system

ÿ + kP ẏ + kI y = 0,

whose natural frequency is ωn =
√

kI and the damping coefficient

is ζ = kP
2
√

kI
. Our goal is now choosing good values of ζ that pro-

vides enough damping. By the classical control theory, a system
that has a good balance between fast error correction and damp-
ing would have ζ = 0.7, which contains a small amount of oscilla-
tion that settles down quickly. When ζ ≥ 1, the system is critically
damped or over-damped, and therefore, oscillation in xi does not
exist. Therefore, it would be safe to choose ζ larger than 0.7. In
our experiments, ζ = 2 worked well. After ζ is chosen, the integral
gain kI is computed using (6).


