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Abstract

We present a new formulation of the Runge-Kutta discontinuous Galerkin (RKDG)
method [9, 8, 7, 6] for solving conservation Laws with increased CFL numbers. The new
formulation requires the computed RKDG solution in a cell to satisfy additional con-
servation constraint in adjacent cells and does not increase the complexity or change
the compactness of the RKDG method. Numerical computations for solving one-
dimensional and two-dimensional scalar and systems of nonlinear hyperbolic conserva-
tion laws are performed with approximate solutions represented by piecewise quadratic
and cubic polynomials, respectively. The hierarchical reconstruction [17, 33] is applied
as a limiter to eliminate spurious oscillations in discontinuous solutions. From both
numerical experiments and the analytic estimate of the CFL number of the newly for-
mulated method, we find that: 1) this new formulation improves the CFL number over
the original RKDG formulation by at least three times or more and thus reduces the
overall computational cost; and 2) the new formulation essentially does not compro-
mise the resolution of the numerical solutions of shock wave problems compared with
ones computed by the RKDG method.

1 Introduction

In this paper, we introduce a simple and effective technique to improve the Courant-Friedrichs-
Lewy (CFL) condition of the Runge-Kutta discontinuous Galerkin (RKDG) method for
solving nonlinear conservation laws while essentially keeping the complexity and other nice
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features of RKDG unchanged. The discontinuous Galerkin (DG) method was firstly intro-
duced by Reed and Hill [24] as a technique to solve neutron transport problems. In a series
of papers by Cockburn, Shu et al. [9, 8, 7, 6], the RKDG method has been developed for
solving nonlinear hyperbolic conservation laws and related equations. In their formulation,
DG is used for spatial discretization with flux values at cell edges computed by either Rie-
mann solvers or monotone flux functions, the total variation bounded (TVB) limiter [27, 9]
is employed to eliminate spurious oscillations and the total variation diminishing (TVD)
Runge-Kutta (RK) method [29] is used for the temporal discretization to ensure the stabil-
ity of the numerical approach while simplifying the implementation. The RKDG method is
compact and can be formulated on arbitrary meshes. It has enjoyed great success in solving
the Euler equations for gas dynamics, compressible Navier-Stokes equations, viscous MHD
equations and many other equations, and motivated many related new numerical techniques
[1, 22].

In [9], the RKDG method is shown to be linearly stable when the CFL factor is bounded
by 1

2q+1
for the second-order and the third-order schemes in the one-dimensional (1D) space,

where q is the degree of the polynomial approximating the solution. In [32], the RKDG
solution is projected to the staggered covolume mesh to obtain distributional derivatives
and then is projected back on each Runge-Kutta step which is analytically shown in 1D to
significantly increase the CFL number. It is found in [19] that the central DG scheme on
overlapping cells with Runge-Kutta time-stepping can use a CFL number larger than the one
that RKDG method can take on non-overlapping cells when the order of accuracy of these
schemes is above the first order. Using integral deferred correction for time discretization
with improved CFL condition can be found in [5]. In [35], a technique is introduced which
incorporates neighboring cell averages as additional constraints into the RKDG method.
This technique improves the CFL condition. However, due to the use of multiple Lagrangian
multipliers, the computational cost also increases during each time step. It would be desir-
able if there is a simple technique to increase CFL number of the RKDG method without
introducing too much computational overhead while still being compact and maintaining its
other nice properties. In this paper, we further develop the strategy in [35] which mixes
the RKDG method with some of the finite volume reconstruction features [3] to achieve this
goal.

We impose additional conservation constraint on the numerical solution computed by
the RKDG method in the sense that in addition to letting an approximate polynomial
solution supported on a cell conserve the cell average of this cell, this polynomial matches
the prescribed cell averages supported on adjacent neighbors of this cell in a least-square
sense. This is achieved by introducing a penalty term to the energy functional associated
with the RKDG formulation. The resulting linear system contains the same number of
equations to be solved as in RKDG, and is referred to as the constrained RKDG method
in the sections that follow. We illustrate the effectiveness of our technique by analytically
estimating the CFL factor and using the 1D and two-dimensional (2D) third- and fourth-
order accurate schemes to compute both smooth and discontinuous solutions test problems,
respectively. The 2D test cases are solved on triangular meshes. In this study, we find that
the constrained RKDG method increases the CFL number over the original RKDG method
by three times or more, and essentially does not destroy the resolution of the discontinuous
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numerical solutions limited by hierarchical reconstruction (HR) [17]. However, there is also
one limitation of the proposed method in terms of the cost efficiency when solving problems
with smooth solutions. From numerical tests reported in this paper, we observe that RKDG
method can achieve better accuracy using less CPU time for solving the smooth solution
problem. The constrained RKDG method needs two times more CPU time than that of the
RKDG method to reach the same magnitude of the error.

We also point out that the computer memory requirement for the constrained RKDG
method is the same as that for the RKDG method. The computer memory utilized by both
methods is mainly for storing the degrees of freedom for each cell. Thus we do not perform
a study on this aspect.

Using finite volume limiting techniques on solutions computed by the RKDG method
for conservation laws has been explored by many researchers. In [23, 38, 39], the WENO
finite volume reconstruction procedures are used as the limiter on cells where the solutions
supported on these cells become oscillatory. In [21], Luo et al. developed a Hermite WENO-
based limiter for the second order RKDG method on unstructured meshes following [23].
It would be convenient to use a compact limiting technique since the RKDG method is
a compact method. The first of such limiters is the TVB projection limiter by Cockburn
and Shu, which uses the lowest and (limited) first Legendre moments locally where non-
smoothness is detected. Other compact limiting techniques which are supposed to remove
spurious oscillations using information only from adjacent cells for any orders include the
moment limiter [4] and the recently developed HR [17]. In [33], HR on 2D triangular meshes
has been studied for the piecewise quadratic DG method; a partial neighboring cell technique
has been developed and a component-wise WENO-type linear reconstruction is used on each
hierarchical level. This new technique has good resolution and accuracy on unstructured
meshes and is easy to implement since the weights on each hierarchical level are trivial to
compute and essentially independent of the mesh. An up to fourth-order accurate point-wise
HR for unstructured triangular meshes has been developed in [35]. Besides the techniques
mentioned above, there are also many research works of limiters for high order schemes for
solving various problems. One goal of the paper is to verify if our technique for improving the
CFL number of RKDG works well with HR. We also present a local iteration technique and
characteristic decomposition for HR which improves the resolution of the solutions computed
by fourth-order accurate schemes in the vicinity of discontinuities.

The paper is organized as follows. Section 2 describes the conservation constrained
RKDG formulation, analytical estimate of the CFL number and the HR limiting procedure.
Results of numerical tests are presented in Section 3. Concluding remarks and a plan for
the future work are included in Section 4.
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2 Formulation of the Method

2.1 Outline of the approach

Here we summarize the conservation constrained Runge-Kutta discontinuous Galerkin finite
element method for solving time dependent hyperbolic conservation laws (2.1)

{
∂uk

∂t
+
∑d

j=1

∂(Fk,j(u))
∂xj

= 0 , k = 1, . . . , p, in Ω× (0,T) ,

u(x, 0) = u0(x) ,
(2.1)

where Ω ⊂ Rd, d is the spatial dimension, d = 1 or 2 in this paper. u = (u1, . . . , up)
T is the

solution vector and the column vectors F,j(u) = (F1,j(u), . . . , Fp,j(u))
T are the flux vectors.

We use the following notation x = (x1) ≡ (x) in 1D, and x = (x1, x2) ≡ (x, y) in 2D for
spatial variables in the rest of the paper, respectively.

The method of lines approach is used to evolve the solution in time. Specifically, the third-
or fourth-order accurate TVD RK time-stepping method is used, based on the accuracy of
spatial discretization. At each RK stage, the constrained DGmethod is used. In the vicinities
of discontinuities of the solution, the computed piecewise polynomial solution is limited by
HR to remove spurious oscillations.

2.2 Conservation constrained discontinuous Galerkin method

In this section, we develop the conservation constrained DG method for solving Eq. (2.1)
with d = 1, or 2 and p = 1 or p > 1. We use these 1D and 2D implementations as examples to
present the essential ingredients of the method, while keeping in mind that this formulation
can be naturally extended to d = 3.

2.2.1 1D Conservation constrained discontinuous Galerkin method

For the sake of presenting the main idea of the conservation constrained DG method, we con-
centrate on developing this method for solving the 1D scalar problem (2.2) in this subsection,
and then extend it to the multi-D system case in the next subsection.

{
∂u
∂t

+ ∂(f(u))
∂x

= 0 , in x ∈ [a, b]× (0,T) ,
u(x, 0) = u0(x) ,

(2.2)

In 1D, let a = x 1
2
< x 3

2
< . . . < xN− 1

2
< xN+ 1

2
= b be a partition of domain [a, b] ⊂ R.

The 1D cells, cell centers and cell sizes are defined by

Ii ≡ (xi− 1
2
, xi+ 1

2
), xi ≡

1

2
(xi− 1

2
+ xi+ 1

2
), △xi ≡ xi+ 1

2
− xi− 1

2
, i = 1, . . . ,N , (2.3)

respectively. Like the DG method, the approximate solution uh is taken in the finite element
space Vh = {P(x) : P|Ii is a polynomial of degree 6 q, i = 1, . . . ,N} .

In this work, the local basis function set Bi ≡ {φ(i)
m (x) : m = 0, . . . , r} of the the finite

element space Vh on Ii is chosen to be Legendre polynomials, r = q. For example,

φ
(i)
0 (x) = 1, φ

(i)
1 (x) = x− xi, φ

(i)
2 (x) = (x− xi)

2 − 1

12
△x2

i , . . . . (2.4)
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On each cell Ii, the approximate solution uh(t, x) to Eq. (2.2) is expressed as

uh(t, x) =
r∑

m=0

c(i)m (t)φ(i)
m (x) . (2.5)

To derive the semi-discrete DG formulation for solving Eq. (2.2), vh ∈ Span{Bi} is
multiplied to Eq. (2.2), integration over Ii and integration by parts lead to

d

dt

∫

Ii

uvhdx+ [f(u(t, x))vh(x)]|x=xi+1/2

x=xi−1/2
−
∫

Ii

f(u)
dvh(x)

dx
dx = 0 . (2.6)

Since the approximate solution uh is discontinuous across cell edges, the interfacial fluxes
are not uniquely determined. The interfacial flux function f(uh) can be replaced by the
Lax-Friedrich flux function (see e.g. [28]) defined as

hi−1/2 = h(u−
h,i−1/2, u

+
h,i−1/2) ≡

1

2

(
f(u−

h,i−1/2) + f(u+
h,i−1/2)

)
+

α

2
(u−

h,i−1/2 − u+
h,i−1/2) ,

where α is the largest characteristic speed, u+
h,i−1/2 and u−

h,i−1/2 are the right- and left-hand
limits of uh respectively at xi−1/2.

Equation (2.6) then leads to the semi-discrete DG scheme

d

dt

∫

Ii

uhφ
(i)
m dx+ △+

(
hi−1/2φ

(i)
m (xi−1/2)

)
−
∫

Ii

f(uh)
dφ

(i)
m (x)

dx
dx = 0 , m = 0, . . . , r , (2.7)

for which each coefficient c
(i)
m (t) of uh must satisfy. Here △+ denotes the forward difference

operator △+ ai = ai+1 − ai .
The resulting system of ordinary differential equations can be solved by a TVD Runge-

Kutta method [29] which builds on convex combinations of several forward Euler schemes of
(2.7).

Our additional conservation constraint is performed within each of the component forward
Euler scheme. To be specific, a forward Euler scheme for solving Eq. (2.7) can be written as

∫
Ii
un+1
h φ

(i)
m dx =

∫
Ii
un
hφ

(i)
m dx−∆tn

(
△+

(
hi−1/2φ

(i)
m (xi−1/2)

)
−
∫
Ii
f(un

h)
dφ

(i)
m (x)
dx

dx
)

,

m = 0, . . . , r ,
(2.8)

where the superscript n denotes the time level tn, and ∆tn ≡ tn+1 − tn. In particular, by
solving Eq. (2.8) with m = 0, we obtain the cell average of un+1

h over cell Ii, denoted by

un+1
i , just as with a finite volume scheme.

Now suppose the cell averages
{
un+1
i

}N

i=1
have been computed on all cells. We do not

compute the rest of the degrees of freedom of un+1
h on cell Ii by using Eq. (2.8). Instead,

we let un+1
h on cell Ii minimize an energy functional (variational to (2.8)) subject to that it

conserves additional given cell averages not only in cell Ii but also in some of its neighbors.
In order to do so, let’s rewrite (2.8) in cell Ii as

∫

Ii

un+1
h vhdx = LIi(vh) , (2.9)
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for any vh ∈ Span {Bi}. Here LIi(vh) represents the right-hand-side of (2.8) with φ
(i)
m being

replaced by vh so that

LIi(vh) =

∫

Ii

un
hvhdx−∆tn

(
△+

(
hi−1/2vh(xi−1/2)

)
−
∫

Ii

f(un
h)
dvh(x)

dx
dx

)
. (2.10)

It is easy to see that LIi(vh) a linear bounded functional defined on the finite element space
on Ii. The variational form of (2.9) is to find un+1

h in the finite element space on Ii such
that it minimizes the energy functional

E(vh) =
1

2

∫

Ii

(vh)
2dx−LIi(vh) . (2.11)

In Sec. 2.1.1 of [35], the conservation constrained RKDG formulation on cell Ii was
described as replacing each component forward Euler scheme by finding un+1

h in the finite
element space on Ii, such that

E(un+1
h ) = Minimum of {E(vh) : vh ∈ Span{Bi}},

subject to 1
△xJ

∫
IJ

vhdx = un+1
J , J = i− 1, i, i+ 1 .

(2.12)

Here we typically choose the set {IJ : J = i− 1, i, i+ 1} consists of cell Ii and its adjacent
cells.

This constrained minimization problem (2.12) can be solved by the method of Lagrangian
multiplier as follows

∫
Ii
un+1
h φ

(i)
m dx− LIi(φ

(i)
m ) =

∑i+1
J=i−1

λ
(i)
J

△xJ

∫
IJ

φ
(i)
m dx, m = 0, . . . , r

1
△xJ

∫
IJ

un+1
h dx = un+1

J , J = i− 1, i, i+ 1 ,
(2.13)

where {λ(i)
J } are Lagrangian multipliers. The coefficients c

(i)
m (tn+1) of un+1

h (see Eq. (2.5))
are determined by solving the linear system (2.13). Note that the left-hand-side of the first
equation of (2.13) is in the same form as equation (2.9) or (2.8).

Even though this technique increases the CFL number, the use of Lagrangian multipliers
also increases the dimensions of the linear system to be solved. In order to overcome this
problem, we introduce a new minimization problem without any constraint as follows:

Find ũn+1
h ∈ Span{Bi} such that

E2(ũ
n+1
h ) = Min {E2(vh) : vh ∈ Span{Bi}} , (2.14)

where

E2(vh) =

(
1

△xi

)
E(vh) + µ

i+1∑

J=i−1

(
1

△xJ

∫

IJ

vhdx− un+1
J

)2

, (2.15)

and µ ≥ 0 is a constant. Note that when µ = 0 the formulation returns to the standard DG
with forward Euler time-stepping.

The variational formulation of problem (2.14) is to find ũn+1
h ∈ Span{Bi} such that

(
1

△xi

)(∫
Ii
ũn+1
h φ

(i)
m dx− LIi(φ

(i)
m )
)
+

2µ
∑i+1

J=i−1

(
1

△xJ

∫
IJ

φ
(i)
m dx

)(
1

△xJ

∫
IJ

ũn+1
h dx− un+1

J

)
= 0 , m = 0, . . . , r .

(2.16)
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In order to preserve the cell average un+1
i defined on Ii, we obtain un+1

h ∈ Span{Bi} by
modifying ũn+1

h as follows

un+1
h ≡ ũn+1

h + un+1
i − 1

△xi

∫

Ii

ũn+1
h dx . (2.17)

Specifically, let the solution ũn+1
h to Eq. (2.16) take the form

ũn+1
h =

r∑

m=0

c̃(i)m (tn+1)φ
(i)
m (x) .

un+1
h is obtained by modifying the 0th degree coefficient c̃

(i)
0 (tn+1) of ũ

n+1
h

c
(i)
0 (tn+1) = c̃

(i)
0 (tn+1) + un+1

i − 1

△xi

∫

Ii

ũn+1
h dx (2.18)

and letting
c(i)m (tn+1) = c̃(i)m (tn+1) , for m = 1, . . . , r . (2.19)

To sum up, solving Eq. (2.16) and subsequently enforcing conservation of the solution by
Eq. (2.17) complete the new conservation constrained DG method.

Remark 1. It’s easy to verify that energy functional E2 defined in Eq. (2.15) is invariant
(subject to a scalar multiplication) under any affine change of coordinates.

Remark 2. Note that the linear system (2.16) consists of the same number of equations
as in a RKDG step (2.8). Therefore the complexity of the new method is close to that of
the standard RKDG (without using orthogonal basis functions).

The linear system (2.16) has a unique solution. In fact, consider the associate homoge-

neous system with LIi(vh) = 0 and un+1
J = 0 for all J = i− 1, i, i+ 1,

(
1

△xi

)(∫

Ii

ũn+1
h vhdx

)
+ 2µ

i+1∑

J=i−1

(
1

△xJ

∫

IJ

vhdx

)(
1

△xJ

∫

IJ

ũn+1
h dx

)
= 0 , (2.20)

for any vh ∈ Span{Bi}. Let vh = ũn+1
h . We conclude that

∫
Ii
|ũn+1

h |2dx = 0, which implies

ũn+1
h ≡ 0.
Remark 3. A compromised formulation with only one Lagrangian multiplier can be

written as follows:
Find ũn+1

h ∈ Span{Bi} such that

E2(ũ
n+1
h ) = Min {E2(vh) : vh ∈ Span{Bi}}

subject to 1
△xi

∫
Ii
vhdx = un+1

i .
(2.21)

This method has similar complexity and CFL numbers to that of the formulation (2.14),
(2.15) and (2.17).
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2.2.2 2D Conservation constrained discontinuous Galerkin method

In this subsection, we discuss how to develop the constrained DG method for solving 2D
hyperbolic systems represented by Eq. (2.1). The physical domain Ω ⊂ R2 is partitioned into
a collection of N non-overlapping cells Th = {Ki : i = 1, . . . ,N} so that Ω =

⋃N
i=1Ki. Here

Ki represents a triangular cell and for simplicity, it is assumed that there are no hanging
nodes in Th. In this work, each component of the approximate solution uh is taken in the
finite element space

Vh = {P : P|Ki
is a polynomial of degree 6 q} .

We note that the same notation Bi is also used to denote the basis function set which spans
the finite element space on 2D cell Ki to avoid introducing too many notations. Specifically,
for the 2D case we define

Bi =
{
φ
(i)
m (x− xi, y − yi) : m = 0, . . . , r

}

=

{
1, (x−xi)√

|Ki|
, (y−yi)√

|Ki|
, (x−xi)

2

(
√

|Ki|)2
,

(x−xi)(y−yi)

(
√

|Ki|)2
, (y−yi)2

(
√

|Ki|)2
, . . . , (y−yi)q

(
√

|Ki|)q

}
,

(2.22)

where xi ≡ (xi, yi) is the centroid of Ki, r+1 = (q+1)(q+2)/2, and |Ki| is the area of cell Ki.
Here Bi is a 2D polynomial basis function set of degree at most q in cell Ki, which consists
of the monomials of 2D Taylor expansions about the cell centroid, (xi, yi), and scaled by the
area of the cell raised to proper powers.

Without loss of generality, on each cell Ki, the approximate solution uh,k(t,x) of the kth

equation of (2.1) is expressed as

uh,k(t,x) =

r∑

m=0

c
(i)
m,k(t)φ

(i)
m (x) . (2.23)

The semi-discrete DG formulation for solving the kth equation of (2.1) can be expressed
as

d

dt

∫

Ki

uh,kφ
(i)
m dx+

∫

∂Ki

hkφ
(i)
m dΓ−

∫

Ki

Fk(uh) · ∇φ(i)
m dx = 0 , m = 0, . . . , r, (2.24)

for which the coeffients c
(i)
m,k(t) of uh,k must satisfy, where Fk = (Fk,0(u), . . . , Fk,1(u)) .

In this 2D case, we also choose the numerical flux function hk of Eq. (2.24) to be the
Lax-Friedrich flux function, defined as

hk = hk(u
in
h ,uout

h ) ≡ 1

2
(Fk(u

in
h ) · ni + Fk(u

out
h ) · ni) +

α

2
(uin

h,k − uout
h,k) , k = 1, . . . , p ,

where α is the largest characteristic speed, and

uin
h (x, t) = limy→x,y∈Kint

i
uh(y, t) , (2.25)

uout
h (x, t) = limy→x,y/∈Ki

uh(y, t) . (2.26)
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Here Kint
i stands for the interior of cell Ki and Ki is the closure of Ki.

Similar to the implementation for solving the 1D scalar equation described in subsection
2.2.1, a forward Euler scheme for solving Eq. (2.24) can be written as

∫

Ki

un+1
h,k φ(i)

m dx =

∫

Ki

un
h,kφ

(i)
m dx−∆tn

(∫

∂Ki

hn
kφ

(i)
m dΓ−

∫

Ki

Fk(u
n
h) · ∇φ(i)

m dx

)
, m = 0, . . . , r .

(2.27)
By solving Eq. (2.27) with m = 0, we obtain the cell average of un+1

h,k over cell Ki, denoted

by un+1
i,k , just as with a finite volume scheme.

Now suppose the cell averages
{
un+1
i,k

}N

i=1
have been computed on all cells. We compute

the remaining degrees of freedom of un+1
h,k on cell Ki by using the constrained DG method.

In order to do so, let’s rewrite (2.27) in cell Ki as

∫

Ki

un+1
h,k vhdx = LKi

(vh) , (2.28)

for any vh ∈ Span {Bi}. Here LKi
(vh) represents the right-hand-side of (2.27) with φ

(i)
m being

replaced by vh, and is a linear bounded functional defined on the finite element space on Ki.
Let’s redefine the energy functionals for this 2D case

E(vh) =
1

2

∫

Ki

(vh)
2dx−LKi

(vh) , (2.29)

and

E2(vh) =

(
1

|Ki|

)
E(vh) + µ

∑

j∈N(TC,i)

(
1

|Kj |

∫

Kj

vhdx− un+1
j,k

)2

, (2.30)

N(TC,i) consists of indices of cells in the set TC,i defined by Eq. (2.32), and µ ≥ 0 is a
constant.

Following the idea explained in subsection 2.2.1, we introduce the following minimization
problem (2.31) for the 2D case for finding un+1

h,k in the finite element space on Ki without
any constraint:

Find ũn+1
h,k ∈ Span{Bi} such that

E2(ũ
n+1
h,k ) = Min {E2(vh) : vh ∈ Span{Bi}} , (2.31)

where E2(vh) is defined by Eq. (2.30) for the 2D case. Note again that when µ = 0 the
formulation returns to the standard DG with forward Euler time-stepping as in the 1D case.

Here we define the set TC,i as

TC,i = {Ki, and some immediate neighbors of Ki} . (2.32)

In 2D, this set includes Ki and some of its neighbors, which are cells sharing same edges or
vertices with Ki. See also Sec. 2.3.1 for specific implementations of TC,i.
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The solution ũn+1
h,k ∈ Span{Bi} to the problem (2.31) is obtained by solving the following

variational problem

(
1

|Ki|

)(∫
Ki

ũn+1
h,k φ

(i)
m dx−L(φ(i)

m )
)
+

2µ
∑

j∈N(TC,i)

(
1

|Kj|

∫
Kj

φ
(i)
m dx

)(
1

|Kj|

∫
Kj

ũn+1
h,k dx− un+1

j,k

)
= 0 , m = 0, . . . , r .

(2.33)

Let the solution ũn+1
h,k to Eq. (2.33) be expressed as ũn+1

h,k =
∑r

m=0 c̃
(i)
m,k(tn+1)φ

(i)
m (x).

The constrained DG solution un+1
h,k ∈ Span{Bi} defined on Ki, which preserves the cell

average un+1
i,k , is obtained by modifying ũn+1

h,k by

un+1
h ≡ ũn+1

h + un+1
i − 1

|Ki|

∫

Ki

ũn+1
h dx . (2.34)

Specifically,

c
(i)
0,k(tn+1) = c̃

(i)
0,k(tn+1) + un+1

i,k − 1

|Ki|

∫

Ki

ũn+1
h,k dx (2.35)

and
c
(i)
m,k(tn+1) = c̃

(i)
m,k(tn+1) , for m = 1, . . . , r. (2.36)

Remark 4. It’s again easy to verify that energy functional E2 defined in Eq. (2.30) is
invariant (subject to a scalar multiplication) under any affine change of coordinates.

Remark 5. Note that the linear system (2.33) consists of the same number of equations
as in a RKDG step (2.27). Therefore the complexity of the 2D constrained DG method is
close to that of the 2D RKDG (without using orthogonal basis functions).

The linear system (2.33) has a unique solution. In fact, consider the associate homoge-

neous system with LKi
(vh) = 0 and un+1

j,k = 0 for all j ∈ N(TC,i),

(
1

|Ki|

)(∫

Ki

ũn+1
h,k vhdx

)
+ 2µ

∑

j∈N(TC,i)

(
1

|Kj|

∫

Kj

vhdx

)(
1

|Kj|

∫

Kj

ũn+1
h,k dx

)
= 0 , (2.37)

for any vh ∈ Span{Bi}. Let vh = ũn+1
h,k . We conclude that

∫
Ki

|ũn+1
h,k |2dx = 0, which implies

ũn+1
h,k ≡ 0.
Remark 6. A compromised formulation with only one Lagrangian multiplier can be

written as follows:
Find ũn+1

h ∈ Span{Bi} such that

E2(ũ
n+1
h,k ) = Min {E2(vh) : vh ∈ Span{Bi}}

subject to 1
|Ki|

∫
Ki

vhdx = un+1
i,k .

(2.38)

This method has similar complexity and CFL numbers to that of the formulation (2.31) and
2.34.
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2.3 Implementation

To summarize the steps taken to implement the constrained DG method for solving multi-D
system of conservation laws, assume we employ a s-stage TVD Runge-Kutta method [28]
to solve Eq. (2.24), which can be written in the form (neglecting subscript k of uh,k for
convenience and when there is no confusion):

∫
Ki

u
(j)
h vhdx =

∑j−1
l=0 αjl

(∫
Ki

u
(l)
h vhdx+∆tn

βjl

αjl
L(u

(l)
h , vh)

)
, j = 1, . . . , s

≡ ∑j−1
l=0 αjl

∫
Ki

u
(j,l+1)
h vhdx ,

(2.39)

with
u
(0)
h = un

h, u
(s)
h = un+1

h . (2.40)

Here αjl and βjl are coefficients of the Runge-Kutta method at the jth stage, and

L(uh, vh) = −
∫

∂Ki

hkvhdΓ +

∫

Ki

Fk(uh) · ∇vhdx .

In particular, u
(j,l+1)
h ∈ Span{Bi} is determined by

∫

Ki

u
(j,l+1)
h vhdx =

∫

Ki

u(l)vhdx+∆tn
βjl

αjl

L(u
(l)
h , vh) ≡ L(vh) , ∀ vh ∈ Span{Bi} .

This is a forward Euler scheme as in (2.27) with the time step size ∆tnβjl, and will firstly
be solved with vh = 1 to obtain cell averages and subsequently be solved by being replaced
similarly by the modification as in Eqs. (2.31) and (2.34).

This technique can also be applied to the classical 4th order Rung-Kutta method with
the DG spatial discretization. The 4 stages are written as follows

∫
Ki

u
n+1/2−
h vhdx =

∫
Ki

un
hvhdx− 1

2
∆tn

∫
∂Ki

hn
kvhdΓ + 1

2
∆tn

∫
Ki

Fn
k(uh) · ∇vhdx

≡ L1(vh) ,∫
Ki

u
n+1/2+
h vhdx =

∫
Ki

un
hvhdx− 1

2
∆tn

∫
∂Ki

h
n+1/2−
k vhdΓ + 1

2
∆tn

∫
Ki

F
n+1/2−
k (uh) · ∇vhdx

≡ L2(vh) ,∫
Ki

un+1−
h vhdx =

∫
Ki

un
hvhdx−∆tn

∫
∂Ki

h
n+1/2+
k vhdΓ +∆tn

∫
Ki

F
n+1/2+
k (uh) · ∇vhdx

≡ L3(vh) ,∫
Ki

un+1
h vhdx =

∫
Ki

un
hvhdx−∆tn

∫
∂Ki

h∗
kvhdΓ +∆tn

∫
Ki

F∗
k(uh) · ∇vhdx

≡ L4(vh) ,
(2.41)

where h
n+1/2−
k denotes the numerical flux evaluated with u

n+1/2−
h from the previous stage

and

h∗
k =

1

6

(
hn
k + 2h

n+1/2−
k + 2h

n+1/2+
k + hn+1−

k

)
,

similarly for F
n+1/2−
k , F

n+1/2+
k and other fluxes. The modification (2.31) and (2.34) that has

been applied to L in equation (2.28) can be applied to L1, L2, L3 and L4 to modify the

values of u
n+1/2−
h , u

n+1/2+
h , un+1−

h and un+1
h respectively. Similar modification can be applied

to each of the s stages in (2.39) (rather than to its forward Euler schemes) to reduce the
number of changes.
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2.3.1 Choices of cells being used as constraints

Here we present several choices of the set TC,i defined in Eq. (2.32) of cells that are used as
constraints. In general, any of adjacent cells can be used as constraint cells. A bigger CFL
number can be obtained with respect to using more constraint cells; while the numerical
error in the solution also increases slightly with more constraint cells. See also Sec. 3 for
numerical test results showing this trend.

For the 1D third- and fourth-order accurate constrained RKDG schemes, the set of
constraint cells for solving for the solution supported on Ii cell is {Ii−1, Ii, Ii+1}. The
resulting 1D third- and fourth-order accurate constrained RKDG schemes are denoted as “1D
Constrained RKDG3-3Cell” and “1D Constrained RKDG4-3Cell” in the following sections,
respectively.

For the 2D third-order accurate constrained RKDG scheme, if we want to solve for
the solution supported on cell K0 in Fig. 1, we choose either TC,0 = {K0,K1,K2,K3} or
TC,0 = {K0,K1,K2,K3,K6,K9,K12}. The resulting schemes are termed as “2D Constrained
RKDG3-4Cell” and “2D Constrained RKDG3-7Cell”, respectively.

For the solution supported on cell K0 in Fig. 1 and computed by the fourth-order
accurate constrained DG scheme, we select TC,0 = {K0,K1,K2,K3,K6,K9,K12}, TC,0 =
{K0,K1,K2,K3,K4,K5,K7,K8,K10,K11}, or TC,0 = {K0,K1, . . . ,K12}. The resulting schemes
are denoted as “2D Constrained RKDG4-7Cell”, “2D Constrained RKDG4-10Cell” and ‘2D
Constrained RKDG4-13Cell”, respectively.

We note there are many other possible ways to select constraint cells. In the present
work, we only test these aforementioned sets of constraint cells. We also note that when
one side of a cell overlaps with the physical boundary of the domain and this cell does not
have neighboring cells on this side, we simply include available edge and vertex adjacent cells
which are inside the physical domain to construct TC,i. When this is the case, the collection
of the constraint cells is not symmetric around the cell. In practice, the CFL number has to
be reduced as well because of this.

Finally, we abbreviate the third- and fourth-order accurate RKDG schemes by “RKDG3”
and “RKDG4” for the sake of convenience, respectively.

0K

2K
K1

3K

K4

K5

6K

7K

8K

9K

10K11K

12K

Figure 1: Triangular cells that can be used as constraints for computing the solution sup-
ported on cell K0.
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2.4 Analytical estimate of the CFL numbers

We use Fourier transform to analyze CFL numbers of the new constrained DG method for
solving the 1D linear advection equation ut + ux = 0.

Consider a uniform partition {xi+1/2} on {−∞,+∞} with the mesh size ∆x = xi+1/2 −
xi−1/2, and cell centroid xi = (xi−1/2 + xi+1/2)/2, i = 0,±1,±2, . . .. Following [36, 19], we
express a polynomial un

h|Ki
of degree r on cell Ki = (xi−1/2, xi+1/2) as a linear combination of

Lagrangian basis functions {lj(x−xi) : j = 0, 1, . . . , r} corresponding to an evenly distributed
set of r + 1 nodes of Lagrangian interpolation {yi,j : j = 0, 1, . . . , r}, symmetric about xi in
cell Ki, with yi,j ∈ (xi−1/2, xi+1/2),

un
h|Ki

(x) =
r∑

j=0

ξni,jlj(x− xi), (2.42)

where ξni,j is the coefficient in front of the j-th Lagrangian basis function, ξni,j = un
h|Ki

(yi,j).
Now we are able to express a fully discrete conservation constrained RKDG method as

ξn+1
i =

s∑

j=−s

Ajξ
n
i+j , (2.43)

where ξn+1
i = (ξn+1

i,0 , ξn+1
i,1 , · · · , ξn+1

i,r )T , Aj is a (r + 1)× (r + 1) matrix, j = −s, . . . , s, and s
is a positive integer. Applying a (discrete) Fourier transform yields the following form

ξ̂
n+1

= Bξ̂
n
, (2.44)

where B is a (r+ 1)× (r+1) matrix (the Fourier symbol). The CFL number of the scheme
can be estimated from the spectral radius of matrix B. Mathematica is used for symbolic
and numerical computation of the above procedure. In Tables 1–5, in which ”p-w” stands
for piecewise, we estimate the CFL numbers for µ = 0, 0.01, 0.5, 100 and 500 (see Eqs. (2.31)
and (2.30)), recalling that µ = 0 represents the standard RKDG method. The TVD Runge-
Kutta methods are used for the second- and third-order accurate time discretization, and
the classical fourth-order accurate Runge-Kutta method is used for the fourth-order accurate
time discretization. We observe about three times or more greater CFL numbers compared
to those of the standard RKDG methods (µ = 0), and that parameter µ is not sensitive for
the new method as long as it is larger than a number, e.g., 0.5. In Tables 6 and 7, we remove
the constraint from the right (upwind-type) and left neighboring cell respectively. Both have
better CFL numbers compared to the case of µ = 0. However, the upwind-type constraint
doesn’t seem to work significantly better than the downwind-type. Using constraints from
both left and right neighboring cells seems to perform the best.

For the case of piecewise linear spatial space (r = 1) and forward Euler temporal dis-
cretization, we write down formula (2.43) explicitly with µ = 1 as follows to compare with
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those of the standard RKDG method (µ = 0).

ξn+1
i =

(
−0.0612245λ 0.183673λ
0.0612245λ −0.183673λ

)
ξn
i−2+(

0.0612245− 0.454082λ 0.0612245 + 1.36224λ
−0.0612245− 0.545918λ −0.0612245 + 1.63776λ

)
ξn
i−1+(

0.510204 + 0.515306λ 0.489796− 1.66837λ
0.489796 + 0.484694λ 0.510204− 1.33163λ

)
ξni +(

−0.0612245− 0.0612245λ −0.0612245 + 0.183673λ
0.0612245 + 0.0612245λ 0.0612245− 0.183673λ

)
ξni+1,

(2.45)

where λ = ∆t/∆x.
As a comparison, the corresponding standard DG method (µ = 0) yields the following

formula.

ξn+1
i =

(
−1.25λ 3.75λ
0.25λ −0.75λ

)
ξn
i−1 +

(
1− 1.75λ −0.75λ
2.75λ 1− 2.25λ

)
ξn
i . (2.46)

The Fourier symbol of (2.45) is (ρij)2×2 where

ρ11 = 0.510204 + 0.515306λ− 0.515306λ cos η − 0.0612245λ cos 2η+
i[0.392857λ sin η + 0.0612245λ sin 2η − 0.122449 sin η],

ρ12 = 0.489796− 1.66837λ+ 1.54592λ cos η + 0.183673λ cos 2η+
i[0.183673λ sin 2η − 1.17857λ sin η − 0.122449 sin η],

ρ21 = 0.489796 + 0.484694λ− 0.484694λ cos η + 0.0612245λ cos 2η+
i[0.122449 sin η + 0.607143λ sin η − 0.0612245λ sin 2η],

ρ22 = 0.510204− 1.33163λ+ 1.45408λ cos η − 0.183673λ cos 2η+
i[0.122449 sin η − 1.82143λ sin η + 0.183673λ sin 2η],

(2.47)

η = ξ∆x and ξ is the Fourier dual variable. On the other hand, the Fourier symbol of (2.46)
looks like
(

1− 1.75λ− 1.25λ cos η + 1.25iλ sin η −0.75λ+ 3.75λ cos η − 3.75iλ sin η
2.75λ+ 0.25λ cos η − 0.25iλ sin η 1− 2.25λ− 0.75λ cos η + 0.75iλ sin η

)
. (2.48)

Remark 7. Even though the new constrained DG method seems to have larger domain
of dependence compared to the standard DGmethod, each of its explicit component steps is a
compact method when neighboring cell averages are used for the constraint. A finite volume
scheme based on reconstruction from cell averages generally has a larger CFL number than
the standard RKDG method with corresponding order. This motivates us to incorporate the
constraint from neighboring cell averages into the DG method without losing its compactness
in implementation. For linear stability of the RKDG method, we refer readers to [10, 11]
and references therein for more details.

2.5 Limiting by hierarchical reconstruction

To prevent non-physical oscillations in the vicinity of discontinuities, we apply HR with
partial neighboring cells [33] to the solution computed at each of the Runge-Kutta stages.
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Table 1: CFL numbers with µ = 0 (no constraint).

Temporal order p-w linear p-w quadratic p-w cubic
2nd 0.33 0.11 0.05
3rd 0.40 0.20 0.13
4th – – 0.14

Table 2: CFL numbers with µ = 0.01 .

Temporal order p-w linear p-w quadratic p-w cubic
2nd 0.41 0.47 0.17
3rd 0.53 0.70 0.60
4th – – 0.47

Table 3: CFL numbers with µ = 0.5.

Temporal order p-w linear p-w quadratic p-w cubic
2nd 0.95 0.83 0.18
3rd 1.2 1.6 0.49
4th – – 0.57

Table 4: CFL numbers with µ = 100.

Temporal order p-w linear p-w quadratic p-w cubic
2nd 1.0 0.88 0.18
3rd 1.1 1.6 0.49
4th – – 0.56

Table 5: CFL numbers with µ = 500.

Temporal order p-w linear p-w quadratic p-w cubic
2nd 1.0 0.88 0.18
3rd 1.1 1.6 0.49
4th – – 0.56
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Since shock waves or contact discontinuities are all local phenomena, we apply the HR lim-
iting procedure to a small region covering discontinuities. Specifically, we employ a detector
introduced in [6] to identify cells which may contain oscillatory solutions. HR with partial
neighboring cells is then applied to solutions supported on these cells. We first sketch the
2D HR with partial neighboring cells limiting procedure here. More details can be found in
[33]. We then describe an extension of the HR limiting by using characteristic decomposition
and local iteration.

HR initially introduced in [17, 18] decomposes the job of limiting a high-order polynomial
supported on a cell, which may be spuriously oscillatory into a series of smaller jobs, each
of which only involves the non-oscillatory reconstruction of a linear polynomial. This linear
polynomial reconstruction can be easily achieved through classical processes such as the
MUSCL reconstruction [13, 14, 15] used in [17], or a WENO-type combination used in [33].
Since the reconstruction of a linear polynomial can only use information from adjacent cells,
HR can be formulated in multi-dimensions on a compact stencil. Using the basis function
set (2.22), the approximate solution uh(x− xi) on cell Ki is represented as

uh(x− xi) =

q∑

|m|=0

cm
(x− xi)

m

(
√
|Ki|)|m|

. (2.49)

Here m is an 2-tuple, and m ∈ N
2
0.

uh(x − xi) may contain spurious oscillations. The HR procedure is to recompute the
coefficients of polynomial uh(x − xi) by using polynomials in cells (or partial neighboring
cells [33]) adjacent to Ki. These adjacent cells (or partial cells) are collected as the set
{Kj} (which also contains cell Ki) and the polynomials (of degree q) supported on them are
denoted as {uh,j(x− xj)} respectively. HR recomputes a set of new coefficients

ĉm , with |m| = q, q − 1, . . . , 0

to replace the original coefficients cm of uh(x−xi) iteratively from the highest to the lowest
degree terms without losing the order of accuracy if the piecewise polynomial solution is
locally smooth, and eliminates spurious oscillations of uh(x− xi) otherwise.

Table 6: CFL numbers with µ = 0.5, without right constraint.

Temporal order p-w linear p-w quadratic p-w cubic
2nd 0.70 0.36 0.10
3rd 0.78 0.43 0.21

Table 7: CFL numbers with µ = 0.5, without left constraint.

Temporal order p-w linear p-w quadratic p-w cubic
2nd 0.45 0.36 0.088
3rd 1.43 0.45 0.22
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To obtain ĉm, we first compute candidates of cm, and then let the value of ĉm be

ĉm = F ( candidates of cm ) ,

where F is a convex limiter of its arguments (e.g., the center biased minmod function used in
[18], or the WENO-type combination in [33], where F (a1, a2, · · · , al) =

∑l
i=1 θiai, for some

θi ≥ 0 and
∑l

i=1 θi = 1).
In order to find these candidates of cm, |m| = m, with 1 ≤ m ≤ q, we take a (m − 1)th

order partial derivative of uh(x−xi) (and also polynomials in adjacent cells or partial cells),
and express

∂m−1uh(x− xi) = Lh(x− xi) +Rh(x− xi) ,

where Lh is the linear part (containing the zeroth and first degree terms) and Rh is the re-
mainder. Clearly, every coefficient in the first degree terms of Lh is in the set {cm : |m| = m}.

In general, for everym subject to |m| = m, 1 ≤ m ≤ q, one can always take some (m−1)th

order partial derivatives of uh(x− xi) so that cm is a coefficient in a first degree term of Lh.
Thus, a “candidate” for a coefficient in a first degree term of Lh to be reconstructed is also
the candidate for the corresponding cm.

In order to find a set of candidates for all coefficients in the first degree terms of Lh(x−xi),
we need to know the new approximate cell averages of Lh(x−xi) on d+1 distinct mesh cells
adjacent to cell Ki, which is a key step. Assume Kj0,Kj1, · · · ,Kjd ∈ {Kj} are these cells or
partial cells and Lj0, Lj1, · · · , Ljd are the corresponding new approximate cell averages. For
example, in order to obtain Lj1, we first compute

Aj1 =
1

|Kj1|

∫

Kj1

∂m−1uh,j1(x− xj1)dx,

then

Dj1 =
1

|Kj1|

∫

Kj1

R̂h(x− xi)dx,

where R̂h(x − xi) is the Rh(x − xi) with its coefficients replaced by previously computed
new values. We can set Lj1 = Aj1 −Dj1. Finally, a non-oscillatory reconstruction procedure
[33] is applied to Lj0, Lj1, · · · , Ljd to obtain candidates of cm in the first degree terms of
Lh(x− xi).

When m = 0, the modified 0th degree coefficient ĉ0 is chosen such that the cell average
of the reconstructed polynomial is the same as cell average of the original uh(x− xi).

More details of the HR implementations and related techniques can be found in [17, 18,
20, 33, 34, 35].

2.5.1 Hierarchical reconstruction using characteristic decomposition and local

iteration

For all third-order schemes considered in the paper, we use component by component HR
limiting with partial neighboring cells technique [33]. However, we noticed that resolutions
of solutions to some Euler equations’ test problems computed by fourth-order schemes were
compromised when component by component HR limiting with partial neighboring cells was
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used. We introduce a HR using characteristic decomposition and local iteration to improve
the resolution of the numerical solution computed by fourth-order schemes.

Let the approximate solution uh(x − xi) to system (2.1) be supported on cell Ki. Let
the outward unit normal on one side of Ki be (nx,0, ny,0); and the edge-adjacent cell of Ki

on this side be Kk0. We compute the average Jacobian A0 by using the cell average values
of Ki and Kk0,

A0 = nx,0
∂f

∂u
+ ny,0

∂g

∂u
, (2.50)

where f = (F1,1(u), F2,1(u), · · · , Fp,1(u))
T and g = (F1,2(u), F2,2(u), · · · , Fp,2(u))

T , with F
being defined in Eq. (2.1). The Roe’s mean matrix is used for Euler equations [25]. Let
RA0 be the matrix of right eigenvectors and LA0 be the matrix of left eigenvectors of A0,
respectively. We project uh(x − xi) and {uh,j(x − xj)} supported on adjacent partial cells
of Ki to obtain characteristic fields

vh(x− xi) = LA0uh(x− xi)

and
vh,j(x− xj) = LA0uh,j(x− xj) ,

respectively. Then the HR limiting with partial neighboring cells technique is applied to
each of the characteristic fields to reconstruct a new v̂h,0(x− xi). We next define

ûh,0(x− xi) = RA0v̂h,0(x− xi) .

We repeat this procedure on each side of theKi to obtain three reconstructed polynomials,
and denote them by ûh,0(x−xi), ûh,1(x−xi) and ûh,2(x−xi), respectively. Finally, each of
the components of ûh,0, ûh,1 and ûh,2 are combined with weights introduced in [26] to obtain
a new reconstructed uh(x− xi).

Next we introduce a local iteration technique to further reduce the small over/under-
shoots. For simplicity, we develop the local iteration technique for the case of scalar solution
uh(x−xi) (application of local iteration to system solution uh(x−xi) is similar). Assume we
need to reconstruct the approximate scalar solution uh(x− xi) supported on cell Ki by HR.
When all new values of the coefficients of uh(x − xi) have been computed, we will update
uh(x− xi) while keeping the solution on its neighboring cells unchanged. This leads to

uh(x− xi) =

q∑

|m|=0

ĉm
(x− xi)

m

(
√
|Ki|)|m|

. (2.51)

We apply HR again to reconstruct (2.51). In other words, we apply HR twice (or more times
if necessary) to update uh(x − xi) with the solutions on its neighboring cells being tempo-
rally fixed. Oscillations in solution are partially due to large coefficient values associated
with high degree terms of the polynomial representation of the solution. By using local iter-
ation, magnitudes of coefficients of high degree terms can be even more lowered. Thus the
local iteration technique can further reduce the possible remaining over/under-shoot without
spreading out the diffusion.

Remark 8. We note that the HR limiting itself does not guarantee the positivity. When
negative pressure is detected at a quadrature point of a cell after limiting, a simple scaling
technique introduced in [33] is used to remove the negative pressure.
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3 Numerical Examples

3.1 Accuracy test using 1D linear advection equation

We first test the capability of the constrained RKDG method to achieve the desired order
of accuracy with a large CFL number, using the 1D linear advection equation

ut + ux = 0 , (x, t) ∈ (−1, 1)× (0,T) (3.1)

with periodic boundary conditions and the initial condition

u(x, t = 0) =
1

2
+ sin(πx) , − 1 ≤ x ≤ 1 . (3.2)

The uniform mesh is used to solve this test problem. The solution is computed up to time
T = 2.0. The cell size, denoted by △x, is listed in tables shown in this sub-section. Table 8
shows that the third-order accurate constrained RKDG scheme (1D Constrained RKDG3-
3Cell) is stable with that the CFL number is equal to 1.6; while Table 10 shows that the
fourth-order accurate constrained RKDG scheme (1D Constrained RKDG4-3Cell) is stable
with that the CFL number equals 0.6. These results are in agreement with results by analytic
estimate. We tested the maximum values of the CFL number that the third- and fourth-order
accurate RKDG schemes can use numerically. We observed that these maximum values are
around 0.2 and 0.1, respectively, which are also consistent with the analytic result shown in
Table 1. Tables 8 and 10 show these numerical test results as well.

We studied how CFL number affects the errors in the constrained DG solution. Table 9
shows the L1 and L∞ errors of the solution computed by 1D Constrained RKDG3-3Cell
method using CFL = 0.2; while Table 11 lists the L1 and L∞ errors of the solution computed
by 1D Constrained RKDG4-3Cell method using CFL = 0.1. We notice that reducing the
CFL number used by the 1D constrained DG methods can reduce magnitudes of L1 and L∞

errors by about 3 times. We also report that for the 2D test problems with smooth solutions
presented in this paper, we do not observe that reducing the CFL number also significantly
lowers the magnitude of errors in solutions computed by the 2D constrained DG methods.

We also studied the how the conservation penalty weight µ affects the CFL numbers that
can be used numerically. Tables 12 and 13 list the accuracy test results with µ = 0.5, 5, 500
for the third- and fourth-order accurate constrained RKDG schemes, respectively. It is clear
that the allowed maximum CFL numbers for these two schemes are not affected by the choice
of µ values. Additionally, the L1 and L∞ errors do not seem to be affected by the µ values
as well.

3.2 Accuracy test using using 1D Burgers’ equation with a smooth

solution

Here we test the maximum CFL number that the 1D constrained RKDG method can achieve
by using the 1D Burgers’ equation

ut +

(
1

2
u2

)

x

= 0 , (x, t) ∈ (−1, 1)× (0,T) , (3.3)
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Table 8: Accuracy test results of solving 1D linear advection equation (3.1) by using the
third-order accurate schemes. L1 and L∞ errors. 3 cells are used for conservation penalty.
T = 2.0.

△x
1D Constrained RKDG3-3Cell, µ = 0.5, CFL = 1.6 1D RKDG3, CFL = 0.2.
L1 error L1 order L∞ error L∞ order L1 error L1 order L∞ error L∞ order

1
400 4.74E-7 – 7.45E-7 – 1.48E-9 - 3.84E-9 –
1

800 5.92E-8 3.00 9.31E-8 3.00 1.85E-10 3.64 4.79E-10 3.00
1

1600 7.40E-9 3.00 1.16E-8 3.00 2.31E-11 3.00 6.00E-11 3.00
1

3200 9.25E-10 3.00 1.45E-9 3.00 3.29E-12 2.81 9.21E-12 2.70
1

6400 1.16E-10 3.00 1.82E-10 2.99 3.42E-13 3.27 1.08E-12 3.09
1

12800 1.45E-11 3.00 2.28E-11 3.00 – – – –

Table 9: Accuracy test results of solving 1D linear advection equation (3.1) by using 1D
Constrained RKDG3-3Cell scheme. L1 and L∞ errors. T = 2.0. CFL = 0.2.

△x
1D Constrained RKDG3-3Cell, µ = 0.5
L1 error L1 order L∞ error L∞ order

1
400 1.60E-7 – 2.53E-7 –
1

800 2.00E-8 3.00 3.16E-8 3.00
1

1600 2.50E-9 3.00 3.95E-9 3.00
1

3200 3.13E-10 3.00 4.95E-10 3.00
1

6400 3.91E-11 3.00 6.20E-11 3.00
1

12800 8.40E-12 2.20 1.54E-11 2.00

Table 10: Accuracy test results of solving 1D linear advection equation (3.1) by using the
fourth-order accurate schemes. L1 and L∞ errors. 3 cells are used for conservation penalty.
T = 2.0.

△x
1D Constrained RKDG4-3Cell, µ = 0.5, CFL = 0.6 1D RKDG4, CFL = 0.1
L1 error L1 order L∞ error L∞ order L1 error L1 order L∞ error L∞ order

1
50 1.34E-7 – 2.65E-7 – 2.06E-9 - 5.33E-9 –
1

100 8.30E-9 4.01 1.63E-8 4.02 1.28E-10 4.01 3.33E-10 4.00
1

200 5.23E-10 3.99 1.05E-9 3.96 8.02E-12 4.00 2.08E-11 4.00
1

400 3.25E-11 4.01 6.42E-11 4.03 7.52E-13 3.41 1.66E-12 3.65
1

800 2.13E-12 3.93 4.23E-12 3.92 – – – –
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Table 11: Accuracy test results of solving 1D linear advection equation (3.1) by using 1D
Constrained RKDG4-3Cell scheme. L1 and L∞ errors. T = 2.0. CFL = 0.1.

△x
1D Constrained RKDG4-3Cell, µ = 0.5
L1 error L1 order L∞ error L∞ order

1
50 7.50E-8 – 1.99E-7 –
1

100 4.67E-9 4.00 1.26E-8 3.99
1

200 2.92E-10 4.00 7.95E-10 3.99
1

400 1.86E-11 3.97 5.01E-11 3.99
1

800 1.15E-12 4.03 3.07E-12 4.03

Table 12: Accuracy test results of solving 1D linear advection equation (3.1) by using the
1D third-order accurate constrained RKDG (1D Constrained RKDG3-3Cell) scheme with
different µ values. L1 and L∞ errors. 3 cells are used for conservation penalty. CFL = 1.6.
T = 2.0.

△x

1D Constrained RKDG3-3Cell
µ = 0.5 µ = 5 µ = 500

L1 error L∞ error L1 error L∞ error L1 error L∞ error
1

1600 7.40E-9 1.16E-8 7.67E-9 1.20E-8 7.69E-9 1.21E-8
1

3200 9.25E-10 1.45E-9 9.58E-10 1.51E-9 9.62E-10 1.51E-9
1

6400 1.16E-10 1.82E-10 1.20E-10 1.88E-10 1.20E-10 1.89E-10
1

12800 1.45E-11 2.28E-11 1.50E-11 2.36E-11 1.50E-11 2.38E-11

Table 13: Accuracy test results of solving 1D linear advection equation (3.1) by using the
1D fourth-order accurate constrained RKDG (1D Constrained RKDG4-3Cell) scheme with
different µ values. L1 and L∞ errors. 3 cells are used for conservation penalty. CFL = 0.6.
T = 2.0.

△x

1D Constrained RKDG4-3Cell
µ = 0.5 µ = 5 µ = 500

L1 error L∞ error L1 error L∞ error L1 error L∞ error
1

100 8.30E-9 1.63E-8 8.31E-9 1.63E-8 8.31E-9 1.63E-8
1

200 5.23E-10 1.05E-9 5.24E-10 1.05E-9 5.24E-10 1.05E-9
1

400 3.25E-11 6.42E-11 3.25E-11 6.42E-11 3.25E-11 6.60E-11
1

800 2.13E-12 4.23E-12 2.13E-12 4.24E-12 2.32E-12 9.66E-12

21



with a periodic boundary condition and the initial condition

u(x, t = 0) =
1

2
+ sin(πx) , − 1 ≤ x ≤ 1 . (3.4)

The uniform mesh is used to solve this test problem. The solution is computed up to time
T = 0.5/π, when it is still smooth. △x listed in tables shown in this sub-section is the cell
size.

Table 14 shows that the third-order accurate 1D Constrained RKDG3-3Cell scheme can
use a CFL number being equal to 1.6; while Table 15 shows that the fourth-order accurate
1D Constrained RKDG4-3Cell scheme is stable with a CFL number equaling 0.6 for this 1D
nonlinear problem test case.

Similar to the 1D linear advection equation test case demonstrated in Sec. 3.1, the nu-
merical study of the choice of µ values using 1D Burgers’ equation test case shows that
the allowed maximum CFL numbers and L1 and L∞ errors of numerical solutions are not
sensitive to µ values as well. These results are summarized in Tables 16 and 17, respectively.

Table 14: Accuracy test results of solving 1D Burgers’ equation (3.3) by using the third-order
accurate schemes. L1 and L∞ errors. 3 cells are used for conservation penalty. T = 0.5/π.

△x
1D Constrained RKDG3-3Cell, µ = 0.5, CFL = 1.6 1D RKDG3, CFL = 0.2
L1 error L1 order L∞ error L∞ order L1 error L1 order L∞ error L∞ order

1
400 9.32E-8 – 6.17E-7 – 3.51E-9 – 5.78E-8 –
1

800 1.18E-8 2.98 8.11E-8 2.93 4.36E-10 3.01 7.30E-9 2.99
1

1600 1.47E-9 3.00 1.00E-8 3.02 5.44E-11 3.00 9.20E-10 2.99
1

3200 1.85E-10 2.99 1.29E-9 2.95 6.84E-12 2.99 1.17E-10 2.98
1

6400 2.30E-11 3.01 1.60E-10 3.01 1.11E-12 2.62 1.81E-11 2.69
1

12800 3.00E-12 2.94 2.01E-11 2.99 – – – –

Table 15: Accuracy test results of solving 1D Burgers’ equation (3.3) by using the fourth-
order accurate schemes. L1 and L∞ errors. 3 cells are used for conservation penalty. T =
0.5/π.

△x
1D Constrained RKDG4-3Cell, µ = 0.5, CFL = 0.6 1D RKDG4, CFL = 0.1
L1 error L1 order L∞ error L∞ order L1 error L1 order L∞ error L∞ order

1
50 4.56E-7 – 1.18E-5 – 2.27E-8 – 3.64E-7 –
1

100 2.99E-8 3.93 7.67E-7 3.94 1.42E-9 4.00 2.27E-8 4.00
1

200 1.93E-9 3.95 4.90E-8 3.97 8.89E-11 4.00 1.44E-9 3.98
1

400 1.21E-10 4.00 3.08E-9 3.99 5.81E-12 3.94 9.27E-11 3.96
1

800 7.87E-12 3.94 1.95E-10 3.98 – – – –
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Table 16: Accuracy test results of solving 1D Burgers’ equation (3.3) by using the third-
order accurate constrained RKDG (1D Constrained RKDG3-3Cell) scheme with different µ
values. L1 and L∞ errors. 3 cells are used for conservation penalty. CFL = 1.6. T = 0.5/π.

△x

1D Constrained RKDG3-3Cell
µ = 0.5 µ = 5 µ = 500

L1 error L∞ error L1 error L∞ error L1 error L∞ error
1

1600 1.47E-9 1.00E-8 1.49E-9 1.05E-9 1.49E-9 1.06E-8
1

3200 1.85E-10 1.29E-9 1.86E-10 1.33E-10 1.87E-10 1.34E-9
1

6400 2.30E-11 1.60E-10 2.34E-11 1.70E-11 2.34E-11 1.71E-10
1

12800 3.00E-12 2.01E-11 3.04E-12 2.13E-12 3.05E-12 2.15E-11

Table 17: Accuracy test results of solving 1D Burgers’ equation (3.3) by using the fourth-
order accurate constrained RKDG (1D Constrained RKDG4-3Cell) scheme with different µ
values. L1 and L∞ errors. 3 cells are used for conservation penalty. CFL = 0.6. T = 0.5/π.

△x

1D Constrained RKDG4-3Cell
µ = 0.5 µ = 5 µ = 500

L1 error L∞ error L1 error L∞ error L1 error L∞ error
1

200 1.93E-9 4.90E-8 1.94E-9 4.91E-08 1.94E-9 4.91E-08
1

400 1.21E-10 3.08E-9 1.21E-10 3.08E-09 1.21E-10 3.08E-09
1

800 7.87E-12 1.95E-10 7.87E-12 1.95E-10 8.03E-12 1.97E-10
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Figure 2: Representative mesh for 2D accuracy tests.

3.3 Accuracy test using 2D linear advection equation

To assess the maximum CFL number that the constrained RKDG methods can use on 2D
triangular meshes, we start with solving the following initial-boundary-value problem of the
2D linear advection equation

ut + ux + uy = 0, (x, y, t) ∈ Ω× (0,T)
u(x, y, t = 0) = 1

4
+ 1

2
sin(π(x+ y)) , (x, y) ∈ Ω .

(3.5)

The domain Ω is the square [−1, 1] × [−1, 1]. The periodic boundary condition is used in
both directions. For the convenience of implementing the periodic boundary condition, the
triangular mesh is obtained by perturbing a uniform triangulation. See Fig. 2 for a typical
mesh used for the accuracy test. We adopt the following definition of the CFL number for
this test case:

Maximum of

{△t

D

}
, (3.6)

where D is the diameter of the inscribed circle of a triangle.
We computed the solution up to time T = 2.0. The typical triangle edge length, denoted

by h, is listed in tables shown in this section. The errors presented are for u.
Table 18 shows that the 2D third-order accurate constrained RKDG scheme using 7 cells

as constraints (2D Constrained RKDG3-7Cell) is stable when CFL number is equal to 0.8;
and the third-order accurate RKDG scheme is stable when CFL number is around 0.22.

Table 19 shows that the 2D fourth-order accurate constrained RKDG scheme using 10
cells as constraints (2D Constrained RKDG4-10Cell) is stable when CFL number is equal to
0.9; while the numerical test shows that the fourth-order accurate RKDG scheme is stable
when CFL number is around 0.2.

We studied how penalty constant µ affects magnitudes of errors for this 2D linear equation
test case. Tables 20 and 21 show that the L1 and L∞ errors computed by the 2D Constrained
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RKDG3-7Cell and RKDG4-10Cell schemes respectively increase only slightly when µ varies
between 0.5 and 500. Thus both 2D schemes are not sensitive for the choice of µ value.

We tested how choices of constraint cells affect the CFL number used by 2D fourth-order
accurate constrained DG schemes. When 7 cells are used as constraints, the maximum CFL
number the 2D Constrained RKDG4-7Cell scheme can take is around 0.35. When 13 cells are
used as constraints, the maximum CFL number that can be reached by the 2D Constrained
RKDG4-13Cell scheme is about 1.3. However, the differences between magnitudes of L1 and
L∞ errors computed by these 2D fourth-order accurate constrained RKDG schemes (with
7, 10 and 13 cells used as constraints respectively) are small. See Tables 22 and 19 for this
conclusion.

Table 18: Accuracy test results of solving 2D linear advection equation (3.5).by the third-
order accurate schemes. L1 and L∞ errors. 7 cells are used for conservation penalty. T = 2.0.

h
2D Constrained RKDG3-7Cell, µ = 0.5, CFL = 0.8 RKDG3, CFL = 0.22
L1 error L1 order L∞ error L∞ order L1 error L1 order L∞ error L∞ order

1
320 2.69E-6 – 1.06E-6 – 1.83E-8 – 1.73E-8 –
1

640 3.36E-7 3.00 1.32E-7 3.01 2.29E-9 3.00 2.22E-9 2.96
1

1280 4.20E-8 3.00 1.66E-8 2.99 2.88E-10 2.99 2.82E-10 2.98
1

2560 5.26E-9 3.00 2.07E-9 3.00 4.01E-11 2.84 4.82E-11 2.55

Table 19: Accuracy test results of solving 2D linear advection equation (3.5) by the fourth-
order accurate schemes. L1 and L∞ errors. 10 cells are used for conservation penalty.
T = 2.0.

h
2D Constrained RKDG4-10Cell, µ = 0.5, CFL=0.9 RKDG4, CFL = 0.2
L1 error L1 order L∞ error L∞ order L1 error L1 order L∞ error L∞ order

1
80 2.40E-7 – 2.05E-7 – 5.43E-9 – 4.80E-9 –
1

160 1.54E-8 3.96 1.51E-8 3.76 3.35E-10 4.02 3.34E-10 3.85
1

320 9.55E-10 4.01 1.06E-9 3.83 2.13E-11 3.98 2.09E-11 4.00
1

640 5.92E-11 4.01 7.54E-11 3.81 2.72E-12 2.97 3.57E-12 2.55

3.4 Accuracy test using 2D Burgers’ equation with a smooth so-

lution

To assess the limit of the permissible CFL number used by the constrained RKDGmethod for
solving 2D nonlinear scalar conservation laws, we solve the following initial-boundary-value
problem of the 2D Burgers’ equation

ut +
(
1
2
u2
)
x
+
(
1
2
u2
)
y
= 0, (x, y) ∈ Ω× (0,T)

u(x, y, t = 0) = 1
4
+ 1

2
sin(π(x+ y)), (x, y) ∈ Ω ,

(3.7)
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Table 20: Accuracy test results of solving 2D linear advection equation (3.5) by the third-
order accurate constrained RKDG (2D Constrained RKDG3-7Cell) scheme with different µ
values. L1 and L∞ errors. 7 cells are used for conservation penalty. CFL = 0.8. T = 2.0.

h

2D Constrained RKDG3-7Cell
µ = 0.5 µ = 5 µ = 500

L1 error L∞ error L1 error L∞ error L1 error L∞ error
1

320 2.69E-6 1.06E-6 2.72E-6 1.07E-06 2.73E-6 1.07E-6
1

640 3.36E-7 1.32E-7 3.41E-7 1.34E-7 3.41E-7 1.34E-7
1

1280 4.20E-8 1.66E-8 4.26E-8 1.68E-8 4.27E-8 1.68E-8
1

2560 5.26E-9 2.07E-9 5.33E-9 2.10E-9 5.33E-9 2.10E-9

Table 21: Accuracy test results of solving 2D linear advection equation (3.5) by the fourth-
order accurate constrained RKDG (2D Constrained RKDG4-10Cell) scheme with different
µ values. L1 and L∞ errors. 10 cells are used for conservation penalty. CFL = 0.9. T = 2.0.

h

2D Constrained RKDG4-10Cell
µ = 0.5 µ = 5 µ = 500

L1 error L∞ error L1 error L∞ error L1 error L∞ error
1

160 1.54E-8 1.51E-8 3.31E-8 2.53E-08 3.85E-8 2.90E-8
1

320 9.55E-10 1.06E-9 2.08E-9 1.81E-9 2.42E-9 2.02E-9
1

640 5.92E-11 7.54E-11 1.35E-10 1.35E-10 1.57E-10 1.50E-10

Table 22: Accuracy test results of solving 2D linear advection equation (3.5) by the fourth-
order accurate constrained RKDG (2D Constrained RKDG4) scheme with different numbers
of cells used for conservation penalty. L1 and L∞ errors. µ = 0.5. T = 2.0.

h
2D Constrained RKDG4-13Cell, CFL = 1.3 2D Constrained RKDG4-7Cell, CFL = 0.35
L1 error L1 order L∞ error L∞ order L1 error L1 order L∞ error L∞ order

1
80 3.27E-7 – 2.62E-7 – 3.09E-7 – 1.51E-7 –
1

160 1.93E-8 4.09 1.79E-8 3.87 1.92E-8 4.01 1.04E-8 3.86
1

320 1.29E-9 3.90 1.38E-9 3.70 1.20E-9 4.00 6.94E-10 3.91
1

640 8.02E-11 4.01 8.76E-11 3.98 7.62E-11 3.98 4.56E-11 3.93
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where Ω = [−1, 1] × [−1, 1]. The periodic boundary condition is used in both directions.
The solution is computed up to T = 0.5/π, when it is still smooth. The triangular meshes
utilized for the 2D linear advection equation test are also used for this convergence test.

We use the following definition of the CFL number for this test case:

Maximum of

{△t|u|
D

}
, (3.8)

where D is the diameter of the inscribed circle of a triangle. |u| is evaluated by the local cell
average value. The errors presented in tables shown in this sub-section are for u. h listed in
these tables is the edge length of the triangle.

Table 23 shows the L1 and L∞ errors and numerical orders of accuracy for using the
2D third-order accurate constrained RKDG scheme with 7 constraint cells (2D Constrained
RKDG3-7Cell) for solving Eq. (3.7). With µ = 0.5, we are able to use a CFL number =
0.8 for computing the solution while achieving the desired order of accuracy. In this table,
we also show that the maximum CFL number that the 2D third-order accurate RKDG
scheme can use is about 0.22 by our numerical test. Table 24 shows that the 2D Constrained
RKDG3-7Cell scheme is not sensitive to the choice of µ values.

Table 25 shows that when 4 cells are used as constraints, the 2D third-order accurate
constrained RKDG scheme (2D Constrained RKDG3-4Cell) is permitted to use a CFL num-
ber = 0.3 for the nonlinear equation test case. In addition, the L1 and L∞ errors of the
numerical solutions to Eq. (3.7) computed by the 2D Constrained RKDG3-4Cell scheme is
about 3 ∼ 4 times smaller than the ones of the solutions computed by the 2D Constrained
RKDG3-7Cell scheme.

In Table 26, we demonstrate the L1 and L∞ errors and numerical orders of accuracy for
using the 2D fourth-order accurate constrained RKDG scheme with 10 constraint cells (2D
Constrained RKDG4-10Cell) and standard fourth-order accurate RKDG scheme to solve
Eq. (3.7), respectively. With µ = 0.5, the 2D Constrained RKDG4-10Cell scheme is capable
of using a CFL number = 0.9 for achieving the fourth-order accuracy; while the maximum
CFL number that the 2D fourth-order accurate RKDG scheme can use is about 0.25 by
our numerical test. Table 27 shows that the 2D Constrained RKDG4-10Cell scheme is not
sensitive to the choice of µ values.

We also tested performance of the fourth-order accurate constrained RKDG scheme using
different choices of constraint cells for µ = 0.5. Table 28 shows that when 7 cells are used
as constraints, the 2D Constrained RKDG4-7Cell scheme is allowed to use a CFL number
= 0.35; while the 2D Constrained RKDG4-13Cell scheme which uses 13 constraint cells can
use a CFL number as big as 1.4 for this nonlinear equation test case.

From Tables 26-28, we notice that the L1 and L∞ errors of the numerical solutions to
Eq. (3.7) computed by the 2D Constrained RKDG4-7Cell scheme is about 2 ∼ 4 times smaller
than the ones computed by the 2D Constrained RKDG4-13Cell method. And the L1 and
L∞ errors of 2D Constrained RKDG4-10Cell scheme and 2D Constrained RKDG4-13Cell
scheme are comparable.

In Fig. 3, the CPU times and L1 errors are presented for solving Eq. (3.7) up to time
T = 0.5/π. We can clearly see that RKDG method obtains better accuracy using less CPU
time for solving the smooth solution problem. To achieve the same magnitude of the error,
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the constrained RKDG method takes about two times more CPU time than that of the
RKDG method. In Fig. 4, we plot the CPU times and L1 errors of these schemes for solving
Eq. (3.7) up to time T = 0.45, when the shock wave has formed. The 3rd- and 4th-order HR
limiters described in Sec. 2.5 are applied in the vicinity of the shock to limit the 3rd- and
4th-order solutions, respectively. When a shock wave forms, the total error is dominated by
the one generated in the vicinity of the discontinuity. We compute the errors in the region
[−1,−0.45] × [−1,−0.45], which is close to the location of the shock. We can see that the
magnitudes of the L1 errors computed by the RKDG and constrained RKDG schemes are
comparable and the constrained RKDG scheme uses less CPU time.
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Figure 3: L1 errors versus CPU time for solving Eq. (3.7) up to time T = 0.5/π. (a)
Comparison of the third-order RKDG and RKDG3-7Cell schemes. The CFL numbers are
0.22 and 0.8 respectively. (b) Comparison of the fourth-order RKDG and RKDG4-10Cell
schemes. The CFL numbers are 0.25 and 0.9 respectively.

To summarize, we found that the 2D constrained RKDG schemes can use a CFL number
3 ∼ 4 times or more greater than the one that 2D RKDG schemes can take. And this
increase is not sensitive to the µ value.

3.5 Test cases using 1D Euler equations with discontinuous solu-

tions

We now assess the resolution and the non-oscillatory property of 1D numerical solutions
computed by the constrained RKDG method and limited by HR. In this sub-section, we
compute solutions of various shock tube problems modeled by the 1D Euler equations

ut + F(u)x = 0

with u = (ρ, ρv, E)T , F(u) = (ρv, ρv2 + p, v(E + p))T , p = (γ − 1)(E − 1
2
ρv2) and γ = 1.4.

µ = 0.5 is used by the constrained RKDG method for all 1D test problems.
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Table 23: Accuracy test results of solving 2D Burgers’ equation (3.7) by the third-order
accurate schemes. L1 and L∞ errors. 7 cells are used for conservation penalty. T = 0.5/π.

h
2D Constrained RKDG3-7Cell, µ = 0.5, CFL = 0.8 2D RKDG3, CFL = 0.22
L1 error L1 order L∞ error L∞ order L1 error L1 order L∞ error L∞ order

1
80 3.51E-5 - 6.87E-5 - 3.06E-6 - 1.26E-5 -
1

160 4.40E-6 3.00 9.09E-6 2.92 3.85E-7 2.99 1.67E-6 2.92
1

320 5.50E-7 3.00 1.30E-6 2.88 4.85E-8 2.99 2.27E-7 2.88
1

640 6.93E-8 2.99 1.78E-7 2.87 6.08E-9 3.00 3.03E-8 2.91
1

1280 8.62E-9 3.01 2.43E-8 2.87 7.62E-10 3.00 4.04E-9 2.91
1

2560 1.08E-9 3.00 3.14E-9 2.95 9.58E-11 2.99 5.49E-10 2.88

Table 24: Accuracy test results of solving 2D Burgers’ equation (3.7) by the third-order
accurate Constrained RKDG (2D RKDG3-7Cell) scheme with different µ values. L1 and L∞

errors. 7 cells are used for conservation penalty. CFL = 0.8. T = 0.5/π.

h

2D Constrained RKDG3-7Cell
µ = 0.5 µ = 5 µ = 500

L1 error L∞ error L1 error L∞ error L1 error L∞ error
1

160 4.40E-6 9.09E-6 4.44E-6 9.37E-6 4.44E-6 9.37E-6
1

320 5.50E-7 1.30E-6 5.55E-7 1.31E-6 5.56E-7 1.31E-6
1

640 6.93E-8 1.78E-7 6.95E-8 1.78E-7 6.95E-8 1.78E-7
1

1280 8.62E-9 2.43E-8 8.69E-9 2.43E-8 8.70E-9 2.43E-8
1

2560 1.08E-9 3.14E-9 1.09E-9 3.14E-9 1.09E-9 3.14E-9

Table 25: Accuracy test results of solving 2D Burgers’ equation (3.7) by the third-order
accurate constrained RKDG (2D Constrained RKDG3) scheme with different numbers of
cells used for conservation penalty. L1 and L∞ errors. µ = 0.5. T = 0.5/π.

h
2D Constrained RKDG3-7Cell, CFL = 0.8 2D Constrained RKDG3-4Cell, CFL = 0.3
L1 error L1 order L∞ error L∞ order L1 error L1 order L∞ error L∞ order

1
160 4.40E-6 – 9.09E-6 – 1.12E-6 – 3.46E-6 –
1

320 5.50E-7 3.00 1.30E-6 2.88 1.42E-7 2.98 4.89E-7 2.82
1

640 6.93E-8 2.99 1.73E-7 2.87 1.80E-8 2.98 6.50E-8 2.91
1

1280 8.62E-9 3.01 2.43E-8 2.87 2.27E-9 2.99 9.23E-9 2.82
1

2560 1.08E-9 3.00 3.14E-9 2.95 2.85E-10 2.99 1.35E-9 2.77
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Table 26: Accuracy test results of solving 2D Burgers’ equation (3.7) by the fourth-order
accurate schemes. L1 and L∞ errors. 10 cells are used for conservation penalty. T = 0.5/π.

h
2D Constrained RKDG4-10Cell, µ = 0.5, CFL = 0.9 2D RKDG4, CFL = 0.25
L1 error L1 order L∞ error L∞ order L1 error L1 order L∞ error L∞ order

1
80 2.46E-6 – 9.42E-6 – 5.18E-8 – 1.88E-7 –
1

160 1.51E-7 4.03 6.29E-7 3.90 3.29E-9 3.98 1.25E-8 3.91
1

320 1.00E-8 3.92 4.25E-8 3.89 2.10E-10 3.97 9.51E-10 3.72
1

640 6.01E-10 4.06 3.10E-9 3.78 1.35E-11 3.96 6.61E-11 3.85
1

1280 3.83E-11 3.97 2.28E-10 3.77 – – – –

Table 27: Accuracy test results of solving 2D Burgers’ equation (3.7) by the fourth-order
accurate Constrained RKDG (2D RKDG4-10Cell) scheme with different µ values. L1 and
L∞ errors. 10 cells are used for conservation penalty. CFL = 0.9. T = 0.5/π.

h

2D Constrained RKDG4-10Cell
µ = 0.5 µ = 5 µ = 500

L1 error L∞ error L1 error L∞ error L1 error L∞ error
1

160 1.51E-7 6.29E-7 1.63E-7 7.42E-7 1.64E-7 7.67E-7
1

320 1.00E-8 4.25E-8 1.03E-8 5.31E-8 1.04E-8 5.48E-8
1

640 6.01E-10 3.10E-9 6.49E-10 3.64E-9 6.56E-10 3.85E-9
1

1280 3.83E-11 2.28E-10 4.11E-11 2.56E-10 4.16E-11 2.71E-10

Table 28: Accuracy test results of solving 2D Burgers’ equation (3.7) by the fourth-order
accurate constrained RKDG (2D Constrained RKDG4) scheme with different numbers of
cells used for conservation penalty. L1 and L∞ errors. µ = 0.5. T = 0.5/π.

h
2D Constrained RKDG4-13Cell, CFL = 1.4 2D Constrained RKDG4-7Cell, CFL = 0.35
L1 error L1 order L∞ error L∞ order L1 error L1 order L∞ error L∞ order

1
160 1.55E-7 – 6.38E-7 – 5.22E-8 – 2.56E-7 –
1

320 9.36E-9 4.05 5.19E-8 3.62 3.41E-9 3.94 1.73E-8 3.89
1

640 5.89E-10 3.99 3.29E-9 3.98 2.21E-10 3.95 1.18E-9 3.87
1

1280 3.73E-11 3.98 2.39E-10 3.78 1.44E-11 3.94 8.41E-11 3.81
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Figure 4: L1 errors versus CPU time for solving Eq. (3.7) up to time T = 0.45. The errors are
computed in region [−1,−0.45]× [−1,−0.45]. (a) Comparison of the third-order RKDG and
RKDG3-7Cell schemes. The CFL numbers are 0.22 and 0.8 respectively. (b) Comparison of
the fourth-order RKDG and RKDG4-10Cell schemes. The CFL numbers are 0.25 and 0.9
respectively.

3.5.1 1D Woodward-Colella blast wave problem

The 1D Woodward-Colella blast wave problem [31] is the Euler equations with an initial
data

(ρ, ρv, E) = (1, 0, 2500), for 0 < x < 0.1,
(ρ, ρv, E) = (1, 0, 0.025), for 0.1 < x < 0.9,
(ρ, ρv, E) = (1, 0, 250), for 0.9 < x < 1.

We computed the numerical solutions using 400 equal size cells. Density profiles of the
solutions are plotted at the time 0.038 and are shown in Fig. 5. We use CFL number 0.1 for
the RKDG schemes, 0.5 for third-order constrained DG and 0.8 for fourth-order constrained
RKDG schemes, respectively. We can clearly see that the constrained RKDG solution and
the RKDG solution have almost identical resolution for both third- and fourth-order accurate
cases for the 1D Woodward-Colella blast wave problem.

3.5.2 1D Lax problem

The 1D Lax problem [12] is the Euler equations with the Lax’s initial data

(ρ, ρv, E) = (0.445, 0.311, 8.928), for − 1 < x < 0,
(ρ, ρv, E) = (0.5, 0, 1.4275), for 0 ≤ x < 1.

We computed the numerical solutions using 200 equal size cells. The density profiles of the
solutions are plotted at the time 0.26 and are shown in Fig. 6. We use CFL number 0.1 for
the RKDG schemes, 0.5 for third-order constrained DG and 0.8 for fourth-order constrained
RKDG schemes, respectively.
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From these 1D compressible gas flow test problems, we notice that HR works well with
the constrained RKDG method. And we conclude that the 1D constraint RKDG method
combined with HR limiter, achieves good quality results for problems containing strong shock
waves in the solutions.

3.6 Test case using 2D Euler equations with discontinuous solu-

tions

In this sub-section, we test 2D gas dynamics problems with discontinuities in solutions to
assess the non-oscillatory property of numerical solutions computed by the 2D constrained
RKDG method together with HR limiter. µ = 0.5 is used by the constrained RKDG method
for all 2D test problems.

3.6.1 Flow past a forward facing step

This flow problem is again taken from [31]. The setup of the problem is the following: a
right-going Mach 3 uniform flow enters a wind tunnel of 1 unit wide and 3 units long. The
step is 0.2 units high and is located 0.6 units from the left side of the tunnel. The problem
is initialized by a uniform, right-going Mach 3 flow, which has density 1.4, pressure 1.0, and
velocity 3.0. The initial state of the gas is also used as the in-flow boundary condition at the
left side boundary. At the right side boundary, the out-flow boundary condition is applied
there. Reflective boundary condition is applied along the walls of the tunnel.

The corner of the step is a singularity. Unlike in [31] and in other studies, we do not
modify our schemes near the corner, which is known to lead to an erroneous entropy layer at
the downstream bottom wall, as well as a spurious Mach stem at the bottom wall. Instead,
we use the approach introduced in [6], which is to locally refine the mesh near the corner,
to decrease these artifacts. The edge length of the triangle away from the corner is roughly
equal to 1

160
. Near the corner, the edge length of the triangle is roughly equal to 1

320
.

We use this test case to compare results computed by constrained RKDG schemes with
different CFL numbers and the RKDG schemes, respectively. Figs. 7 and 8 plot the contours
of the numerical solutions. We can see that the resolutions of the solutions computed by
the constrained RKDG schemes are comparable with the ones of the solutions computed by
the RKDG schemes. Additionally, the constrained RKDG schemes are able to take the CFL
number 0.5; while the DG schemes use 0.1. We clearly see that the bigger CFL numbers
used by the constrained RKDG schemes do not compromise the resolution of the solutions
to this test problem.

3.6.2 2D Shu-Osher problem

The Shu-Osher problem [30] is a benchmark for testing the resolution that high-order accu-
rate methods can provide. Here we set up this test problem using a 2D triangular mesh to
assess the performance of the 2D constrained RKDG method.

Solutions to this test problem are computed in a rectangular domain of [−5, 5]× [0, 0.1]
with a uniform triangulation of 301 vertices in the x-direction and 4 vertices in the y-
direction. The initial value of the velocity component in the y-direction is zero. The reflecting
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boundary condition is used in the y-direction. The initial data is as follows

(ρ, v, p) =

{
(3.857143, 2.629369, 10.333333), for x < −4,
(1 + 0.2 sin(5x), 0, 1), for x ≥ −4

Density profiles of the solutions along a line parallel to x-axis are plotted in Fig. 9 at
time T = 1.8, against a fine grid solution, which is treated as the ”exact” solution. We can
see that the all third- and fourth-order numerical schemes capture the solution profile of the
Shu-Osher problem nicely.

3.6.3 Double Mach reflection

The Double Mach reflection problem is taken from [31]. We solve the Euler equations in
a rectangular computational domain of [0, 4] × [0, 1]. A reflecting wall lies at the bottom
of the domain starting from x = 1

6
. Initially a right-moving Mach 10 shock is located at

x = 1
6
, y = 0, making a 600 angle with the x axis and extends to the top of the computational

domain at y = 1. The reflective boundary condition is used at the wall.
We test our method on unstructured meshes with the triangle edge length roughly equal

to 1
400

. The density contour of the flow in the [0, 3]×[0, 1] region at the time T = 0.2 is shown
with 30 equally spaced contour lines. Figs. 10 and 11 are the contour plots of the numerical
solutions computed by the third- and fourth-order RKDG and constrained RKDG schemes
respectively. Figs. 12 and 13 show the “blown-up” portion around the double Mach region.
We can see that both the RKDG and constrained RKDG schemes successfully reproduce the
vortex sheet roll-up, and the constrained RKDG method does not compromise the resolution
of the solution compared with the RKDG method.

4 Concluding Remarks

In this work, we have developed a conservation constrained RKDG method for solving con-
servation Laws. The new formulation requires the computed RKDG solution defined on a
cell to satisfy additional conservation constraints in adjacent cells (in the least-square sense)
and does not increase the complexity or change the compactness of the original RKDG
method. This conservation constrained RKDG method improves the CFL number over the
RKDG method by 3 times or more. Moreover, for the test problems with discontinuous
solutions limited by HR, the constrained RKDG method also produces results similar to
ones computed the RKDG method.

We also note that the HR limiter with partial neighboring cell technique is extended by
introducing characteristic decomposition and local iteration. Even though this extension
increases the computational cost slightly during the limiting process, HR limiting is applied
locally so it essentially won’t hurt the overall complexity. In the future, we will explore the
constrained DG formulation with TVD multi-step time-marching method and develop better
HR limiting technique so that we will be able to solve shock wave problems numerically with
better resolutions and less computational cost.
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Figure 5: Solutions of the 1D blast wave problem computed on 400 cells. (a) The 1D fourth-
order accurate constrained RKDG4-3Cell solution compared with the “exact” solution, CFL
= 0.5; (b) the 1D fourth-order accurate RKDG solution compared with the “exact” solution,
CFL = 0.1; (c) the 1D third-order accurate constrained RKDG3-3Cell solution compared
with the “exact” solution, CFL = 0.8; (d) the 1D third-order accurate RKDG solution
compared with the “exact” solution, CFL = 0.1.
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Figure 6: Solutions of the 1D Lax shock tube problem computed on 200 cells. (a) The fourth-
order accurate constrained RKDG4-3Cell solution compared with the “exact” solution, CFL
= 0.5; (b) the fourth-order accurate RKDG solution compared with the “exact” solution,
CFL = 0.1; (c) the third-order accurate constrained RKDG3-3Cell solution compared with
the “exact” solution, CFL = 0.8; (b) the third-order accurate RKDG solution compared
with the “exact” solution, CFL = 0.1.
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Mach Step: Density Contour; RKDG3, CFL = 0.1
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Figure 7: Solutions to the forward-facing step problem by third-order accurate schemes.
(a) The third-order accurate RKDG solution with CFL = 0.1; (b) The third-order accurate
constrained RKDG3-7Cell solution with CFL = 0.1; (c) The third-order accurate constrained
RKDG3-7Cell solution with CFL = 0.5.
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Mach Step: Density Contour; RKDG4, CFL = 0.1
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Mach Step: Density Contour; Constrained RKDG4−10Cell, CFL = 0.1
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Figure 8: Solutions to the forward-facing step problem computed by fourth-order accurate
schemes. (a) The fourth-order accurate RKDG solution with CFL = 0.1; (b) The fourth-
order accurate constrained RKDG4-10Cell solution with CFL = 0.1; (c) The fourth-order
accurate constrained RKDG4-10Cell solution with CFL = 0.5.
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Figure 9: Cross section plots of solutions of the 2D Shu-Osher problem computed on a rect-
angular domain of [−5, 5]× [0, 0.1]. (a) The 2D fourth-order accurate constrained RKDG4-
10Cell solution compared with the “exact” solution, CFL = 0.5; (b) the 2D fourth-order
accurate RKDG solution compared with the “exact” solution, CFL = 0.1; (c) the 2D third-
order accurate constrained RKDG3-7Cell solution compared with the “exact” solution, CFL
= 0.5; (d) the 2D third-order accurate RKDG solution compared with the “exact” solution,
CFL = 0.1.
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Double Mach: Density Contour; RKDG3
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Double Mach: Density Contour; Constrained RKDG3−7Cell
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Figure 10: Solutions to the double Mach reflection problem computed by third-order accurate
schemes. T = 2.0. (a) The third-order accurate RKDG solution, CFL = 0.02; (b) The third-
order accurate constrained RKDG3-7Cell solution, CFL = 0.1.
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Double Mach: Density Contour; RKDG4
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Double Mach: Density Contour; Constrained RKDG4−10Cell
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Figure 11: Solutions to the double Mach reflection problem by fourth-order accurate schemes.
T = 2.0. (a) The fourth-order accurate RKDG solution, CFL = 0.02; (b) The fourth-order
accurate constrained RKDG4-10Cell solution, CFL = 0.1.
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Double Mach: Blow−up Region; RKDG3
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Double Mach: Blow−up Region; Constrained RKDG3−7Cell
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Figure 12: Solutions to the double Mach reflection problem computed by third-order schemes.
Blown-up region around the double Mach stems. (a) The third-order accurate RKDG solu-
tion; (b) The third-order accurate constrained RKDG3-7Cell solution.
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Double Mach: Blow−up Region; RKDG4
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Double Mach: Blow−up Region; Constrained RKDG4−10Cell
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Figure 13: Solutions to the double Mach reflection problem computed by fourth-order
schemes. Blown-up region around the double Mach stems. (a) The fourth-order accurate
RKDG solution; (b) The fourth-order accurate constrained RKDG4-10Cell solution.
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