Math 7334 Operator Theory



                                                                                                                       
                                                                                                                                    Instructor: Michael Loss
                                                                                         Lectures: TTh 1:35-2:55pm

                                                                                                                                     Location: Skiles 246

                                                                                       Office hours: Tuesday 12-1:30 or by appointment 





                        Textbook:  Theory of linear operators in Hilbert space by N.I. Akhiezer and I.M. Glazman, Dover.

                   
                         A number of mathematical and physical problems can be formulated and actually solved through the methods of operator theory.
                         The prime example are linear evolution equations. They can be viewed as initial value problems
                          involving linear operators on a Banach space or Hilbert space. To stay with a concrete example, consider the heat equation on some domain
                          with some boundary conditions. Associated with this problem is a linear, unbounded operator, the generator of the heat flow.
                          If this operator is self-adjoint then it follows from the spectral theorem that this evolution problem has a solution global in time.
                          The notion of self-adjointness, therefore, captures an essential part of the nature of this problem, in particular features like boundary
                          conditions must enter into the picture.  One difficulty is that in most of the interesting examples one has to deal with unbounded operators.

                          Thus, the course will evolve as follows. We will review Hilbert space theory, in particular the projection lemma, the Riesz representation
                          theorem and the uniform boundedness principle. We will emphasize the examples, such as standard L^2 theory, and maybe the Hilbert space of
                          almost periodic functions. The next step up is to deal in detail with bounded operators, in particular the theory of bounded self-adjoint operators
                          culminating in the spectral theorem. There is a nice presentation in Akhiezer and Glazman, however we shall take a different approach using Banach
                          Banach and C* algebras and follow the treatment of Robert Zimmer.

                          The fun starts with unbounded operators. The difference is now that the domain is a defining part of the operator. The notion of a closed operator is a relaxation
                          of the notion of continuity and is crucial for doing any kind of analysis. The notion of self-adjointness is also tricky in this context; there are symmetric operators that
                          are not self-adjoint and for which the spectral theorem does not hold. These developments are not discussed for generalization's sake but, as mentioned before, many of                           the interesting applications require unbounded operators. We will discuss via examples some boundary value problems and their self-adjoint extensions. The theory was                           invented in large parts because of quantum mechanics and if time permits we will talk about this topic.

                          I will follow the textbook, which is a classic, more or less. This textbook is good and cheap. Sometimes I will post additional notes on this page. The notes will be
                          based on various books in addition to Akhiezer and Glazman:

                                    Introductory Functional Analysis with Applications, by Erwin Kreyszig, Wiley.

                                Essential Results of Functional Analysis, by Robert J. Zimmer, The University of Chicago Press

                                Functional Analysis, by Reed and Simon, Academic Press

                                Fourier Analysis and Self-adjointness, Reed and Simon, Academic Press

                                Perturbation theory of linear operators, by Tosio Kato, Springer

                                Linear Operators in Hilbert Space, by Joachim Weidmann, Springer


                          Here is a rough outline of the course with an approximate number of lectures devoted to each topic:

                            Review of Hilbert space theory: Projection lemma, Riesz representation theorem, orthonormal systems and basis, examples of Hilbert spaces such
                            as the space of almost periodic functions, weak and strong convergence, weak compactness.  about 3 Lectures

                            Linear operators: Bounded operators, completely continuous operators, projection operators, unitary operators with examples such as the Fourier
                            transform.  3 Lectures

                            General concepts for linear operators: Closed operators, invariant subspaces, resolvent and spectrum, symmetric and selfadjoint operators,  with examples
                            such as multiplication operators and differential operators, singular integrals. 3 Lectures

                            Spectral analysis of bounded operators: eigenspaces, Banach algebras and C* algebras, spectral theorem for selfadjoint for bounded operators,
                            proof of the fundamental theorem of almost periodic functions, if time permits.  5 Lectures

                            Unbounded operators: Closed operators, adjoint operators, range and kernel of unbounded operators, fundamental
                            criterion for self-adjointness, Cayley transform, spectral theorem for undbounded self-adjoint  operators. 4 Lectures

                            Extension of operators:  symmetric operators versus selfadjoint operators, deficiency indices, self-adjoint extensions,  semi-bounded operators,
                            Kato-Rellich theorem, examples . 5 Lectures

                            Semigroup theory: If time permits, I will add a discussion about semigroup theory, in particular the theorem of Hille-Yosida concerning generators of
                            contraction semigroups. 4 Lectures.

                            GRADES: There will be no tests but occasionally some homework which you are required to hand in. The grade will be awarded according to correctly solved
                            homework problems.


                            Summary on Hilbert Space theory
                           
                            L2 Spaces

                            Bounded operators

                            A little note on PDEs

                            General Spectral Theory

                            Spectral Theorem for bounded Self-adjoint Operators

                            Closed operators

                            Basic Theorem on Self-adjointness

                            The Laplacian as a self adjoint operator

                            The Kato-Rellich Theorem

                            The spectral theorem for unbounded self adjoint operators

                            Extensions of symmetric operators

                            The Theorem of Hille and Yosida

                           





                            Homework 1 (due January 30, 2014, New deadline February 4)

                            Solutions for Homework 1

                            Homework 2 (due February 25)

                            Solutions for Homework 2

                            Homework 3 (due March 27)

                            Solutions for Homework 3

                            Homework 4 (due April 15)

                            Solutions for Homework 4